Thinking in C++ - Volume 1
[image: Accueil]
Bruce Eckel


			Voici la version originale de "Thinking in C++", volume 1
		

	Titre : Thinking in C++ - Volume 1
	Auteur : Bruce Eckel
	Parution : 25 janvier 2007 
	Licence : 
		Ce document est issu de http://www.developpez.com et reste la propriété exclusive de son auteur. La copie, modification et/ou distribution par quelque moyen que ce soit est soumise à l'obtention préalable de l'autorisation de l'auteur.
	



0 - 
Preface
Like any human language, C++
provides a way to express concepts. If successful, this medium of expression
will be significantly easier and more flexible than the alternatives as problems
grow larger and more complex.

You can't just look at C++ as a
collection of features; some of the features make no sense in isolation. You can
only use the sum of the parts if you are thinking about design, not
simply coding. And to understand C++ this way, you must understand the problems
with C and with programming in general. This book discusses programming
problems, why they are problems, and the approach C++ has taken to solve such
problems. Thus, the set of features I explain in each chapter will be based on
the way that I see a particular type of problem being solved with the language.
In this way I hope to move you, a little at a time, from understanding C to the
point where the C++ mindset becomes your native tongue.
Throughout, I'll be taking the
attitude that you want to build a model in your head that allows you to
understand the language all the way down to the bare metal; if you encounter a
puzzle, you'll be able to feed it to your model and deduce the answer. I
will try to convey to you the insights that have rearranged my brain to make me
start “thinking in
C++.”
0-1 - 
What's new in the second
edition
This book is a thorough rewrite of the
first edition to reflect all of the changes introduced in C++ by the
finalization of the C++ Standard, and also to reflect what I've learned
since writing the first edition. The entire text present in the first edition
has been examined and rewritten, sometimes removing old examples, often changing
existing examples and adding new ones, and adding many new exercises.
Significant rearrangement and re-ordering of the material took place to reflect
the availability of better tools and my improved understanding of how people
learn C++. A new chapter was added which is a rapid introduction to the
C concepts and basic C++ features for those who don't
have the C background to tackle the rest of the book. The
CD ROM bound into the back of the book contains a seminar
that is an even gentler introduction to the C concepts necessary to understand
C++ (or Java). It was created by Chuck Allison for my
company (MindView, Inc.), and it's called
“Thinking in C: Foundations for Java and C++.”
It introduces you to the aspects of C that are necessary for you to move on to
C++ or Java, leaving out the nasty bits that C programmers must deal with on a
day-to-day basis but that the C++ and Java languages steer
you away from (or even eliminate, in the case of Java).
So the short answer  to the question
“what's different in the 2nd edition?” is: what
isn't brand new has been rewritten, sometimes to the point where you
wouldn't recognize the original examples and
material.
0-1-1 - 
What's in Volume 2 of this book
The completion of the C++ Standard also
added a number of important new libraries, such as string and the
containers and algorithms in the Standard C++ Library, as well as new complexity
in templates. These and other more advanced topics have been relegated to
Volume 2 of this book, including
issues such as multiple inheritance, exception handling, design patterns, and
topics about building and debugging stable
systems.
0-1-2 - 
How to get Volume 2
Just like the book you currently hold,
Thinking in C++, Volume 2 is downloadable in its entirety from my Web
site at www.BruceEckel.com. You can find information on the Web site
about the expected print date of Volume 2.
The Web site also contains the source
code for both of the books, along with updates and information about other
seminars-on-CD ROM that MindView, Inc. offers, public seminars, and in-house
training, consulting, mentoring, and
walkthroughs.
0-2 - 
Prerequisites
In the first edition of this book, I
decided to assume that someone else had taught you C and that you have at least
a reading level of comfort with it. My primary focus was on simplifying what I
found difficult: the C++ language. In this edition I have added a chapter that
is a rapid introduction to C, along with the Thinking in C seminar-on-CD,
but I am still assuming that you already have some kind of programming
experience. In addition, just as you learn many new words intuitively by seeing
them in context in a novel, it's possible to learn a great deal about C
from the context in which it is used in the rest of the
book.
0-3 - 
Learning C++
I clawed my way into C++ from exactly the
same position I expect many of the readers of this book are in: as a programmer
with a very no-nonsense, nuts-and-bolts attitude about programming. Worse, my
background and experience was in hardware-level embedded programming, in which C
has often been considered a high-level language and an inefficient overkill for
pushing bits around. I discovered later that I wasn't even a very good C
programmer, hiding my ignorance of structures, malloc( ) and
free( ), setjmp( ) and longjmp( ), and other
“sophisticated” concepts, scuttling away in shame when the subjects
came up in conversation instead of reaching out for new
knowledge.
When I began my struggle to understand
C++, the only decent book was Bjarne Stroustrup's
self-professed “expert's
guide,(1)”
so I was left to simplify the basic concepts on my own. This resulted in my
first C++ book,(2)
which was essentially a brain dump of my experience. That was designed as a
reader's guide to bring programmers into C and C++ at the same time. Both
editions(3) of the
book garnered enthusiastic response.
At about the same time that Using
C++ came out, I began teaching the language in seminars and presentations.
Teaching C++ (and later, Java) became my profession; I've seen nodding
heads, blank faces, and puzzled expressions in audiences all over the world
since 1989. As I began giving in-house training to smaller groups of people, I
discovered something during the exercises. Even those people who were smiling
and nodding were confused about many issues. I found out, by creating and
chairing the C++ and Java tracks at the Software Development Conference for many
years, that I and other speakers tended to give the typical audience too many
topics, too fast. So eventually, through both variety in the audience level and
the way that I presented the material, I would end up losing some portion of the
audience. Maybe it's asking too much, but because I am one of those people
resistant to traditional lecturing (and for most people, I believe, such
resistance results from boredom), I wanted to try to keep everyone up to
speed.
For a time, I was creating a number of
different presentations in fairly short order. Thus, I ended up learning by
experiment and iteration (a technique that also works well in C++ program
design). Eventually I developed a course using everything I had learned from my
teaching experience. It tackles the learning problem in discrete, easy-to-digest
steps and for a hands-on seminar (the ideal learning situation) there are
exercises following each of the presentations. You can find out about my
public seminars at
www.BruceEckel.com, and you can also learn about the seminars that
I've turned into CD ROMs.
The first edition of this book developed
over the course of two years, and the material in this book has been road-tested
in many forms in many different seminars. The feedback that I've gotten
from each seminar has helped me change and refocus the material until I feel it
works well as a teaching medium. But it isn't just a seminar handout; I
tried to pack as much information as I could within these pages, and structure
it to draw you through onto the next subject. More than anything, the book is
designed to serve the solitary reader who is struggling with a new programming
language.
0-4 - 
Goals
My goals in this book are
to:
		Present the material one
simple step at a time, so the reader can easily digest each concept before
moving on.
		Use
examples that are as simple and short as possible. This often prevents me from
tackling “real world” problems, but I've found that beginners
are usually happier when they can understand every detail of an example rather
than being impressed by the scope of the problem it solves. Also, there's
a severe limit to the amount of code that can be absorbed in a classroom
situation. For this I sometimes receive criticism for using “toy
examples,” but I'm willing to accept that in favor of producing
something pedagogically
useful.
		Carefully
sequence the presentation of features so that you aren't seeing something
you haven't been exposed to. Of course, this isn't always possible;
in those situations, a brief introductory description will be
given.
		Give you what
I think is important for you to understand about the language, rather than
everything that I know. I believe there is an “information importance
hierarchy,” and there are some facts that 95 percent of programmers will
never need to know and that would just confuse them and add to their perception
of the complexity of the language. To take an example from C, if you memorize
the operator precedence table (I never did), you can write clever code. But if
you have to think about it, it will confuse the reader/maintainer of that
code. So forget about precedence, and use parentheses when things aren't
clear. This same attitude will be taken with some information in the C++
language, which I think is more important for compiler writers than for
programmers.
		Keep
each section focused enough so the lecture time - and the time between
exercise periods - is reasonable. Not only does this keep the
audience's minds more active and involved during a hands-on seminar, it
gives the reader a greater sense of
accomplishment.
		Provide
readers with a solid foundation so they can understand the issues well enough to
move on to more difficult coursework and books (in particular, Volume 2 of this
book).
		I've
tried not to use any particular vendor's version of C++ because, for
learning the language, I don't think that the details of a particular
implementation are as important as the language itself. Most vendors'
documentation concerning their own implementation specifics is
adequate.

0-5 - 
Chapters
C++ is a language in which new and
different features are built on top of an existing syntax. (Because of this, it
is referred to as a
hybrid
object-oriented programming language.) As more people pass through the learning
curve, we've begun to get a feel for the way programmers move through the
stages of the C++ language features. Because it appears to be the natural
progression of the procedurally-trained mind, I decided to understand and follow
this same path and accelerate the process by posing and answering the questions
that came to me as I learned the language and those questions that came from
audiences as I taught the language.
This course was designed with one thing
in mind: to streamline the process of learning C++. Audience feedback helped me
understand which parts were difficult and needed extra illumination. In the
areas in which I got ambitious and included too many features all at once, I
came to know - through the process of presenting the material - that
if you include a lot of new features, you have to explain them all, and the
student's confusion is easily compounded. As a result, I've taken a
great deal of trouble to introduce the features as few at a time as possible;
ideally, only one major concept at a time per chapter.
The goal, then, is for each chapter to
teach a single concept, or a small group of associated concepts, in such a way
that no additional features are relied upon. That way you can digest each piece
in the context of your current knowledge before moving on. To accomplish this, I
leave some C features in place for longer than I would prefer. The benefit is
that you will not be confused by seeing all the C++ features used before they
are explained, so your introduction to the language will be gentle and will
mirror the way you will assimilate the features if left to your own
devices.
Here is a brief description of the
chapters contained in this book:
Chapter 1: Introduction to
Objects. When projects became too big and complicated to easily maintain,
the “software crisis”
was born, with programmers saying, “We can't get projects done, and
if we can, they're too expensive!” This precipitated a number of
responses, which are discussed in this chapter along with the ideas of
object-oriented programming (OOP) and how it attempts to solve the software
crisis. The chapter walks you through the basic concepts and features of OOP and
also introduces the analysis and design process. In addition, you'll learn
about the benefits and concerns of adopting the language and suggestions for
moving into the world of C++.
Chapter 2: Making and Using
Objects. This chapter explains the process of building programs using
compilers and libraries. It introduces the first C++ program in the book and
shows how programs are constructed and compiled. Then some of the basic
libraries of objects available in Standard C++ are introduced. By the time you
finish this chapter you'll have a good grasp of what it means to write a
C++ program using off-the-shelf object libraries.
Chapter 3: The C in C++. This
chapter is a dense overview of the features in C that are used in C++, as well
as a number of basic features that are available only in C++. It also introduces
the “make” utility that's common in the software development
world and that is used to build all the examples in this book (the source code
for the book, which is available at www.BruceEckel.com, contains
makefiles for each chapter). Chapter 3 assumes that you have a solid grounding
in some procedural programming language like Pascal, C, or even some flavors of
Basic (as long as you've written plenty of code in that language,
especially functions). If you find this chapter a bit too much, you should first
go through the Thinking in C seminar on the CD that's bound with
this book (and also available at www.BruceEckel.com).
Chapter 4: Data Abstraction. Most
features in C++ revolve around the ability to create new data types. Not only
does this provide superior code organization, but it lays the groundwork for
more powerful OOP abilities. You'll see how this idea is facilitated by
the simple act of putting functions inside structures, the details of how to do
it, and what kind of code it creates. You'll also learn the best way to
organize your code into header files and implementation files.
Chapter 5: Hiding the
Implementation.You can decide that some of the data and functions in
your structure are unavailable to the user of the new type by making them
private. This means that you can separate the underlying implementation
from the interface that the client programmer sees, and thus allow that
implementation to be easily changed without affecting client code. The keyword
class is also introduced as a fancier way to describe a new data type,
and the meaning of the word “object” is demystified (it's a
fancy variable).
Chapter 6: Initialization and
Cleanup.One of the most common C errors results from uninitialized
variables. The constructor in C++ allows you to guarantee that variables
of your new data type (“objects of your class”) will always be
initialized properly. If your objects also require some sort of cleanup, you can
guarantee that this cleanup will always happen with the C++
destructor.
Chapter 7: Function Overloading and
Default Arguments.C++ is intended to help you build big, complex
projects. While doing this, you may bring in multiple libraries that use the
same function name, and you may also choose to use the same name with different
meanings within a single library. C++ makes this easy with function
overloading, which allows you to reuse the same function name as long as the
argument lists are different. Default arguments allow you to call the same
function in different ways by automatically providing default values for some of
your arguments.
Chapter 8: Constants.This
chapter covers the const and volatile keywords, which have
additional meaning in C++, especially inside classes. You'll learn what it
means to apply const to a pointer definition. The chapter also shows how
the meaning of const varies when used inside and outside of classes and
how to create compile-time constants inside classes.
Chapter 9: Inline Functions.
Preprocessor macros eliminate function call overhead, but the preprocessor also
eliminates valuable C++ type checking. The inline function gives you all the
benefits of a preprocessor macro plus all of the benefits of a real function
call. This chapter thoroughly explores the implementation and use of inline
functions.
Chapter 10: Name Control.Creating names is a fundamental activity in programming, and when a project
gets large, the number of names can be overwhelming. C++ allows you a great deal
of control over names in terms of their creation, visibility, placement of
storage, and linkage. This chapter shows how names are controlled in C++ using
two techniques. First, the static keyword is used to control visibility
and linkage, and its special meaning with classes is explored. A far more useful
technique for controlling names at the global scope is C++'s
namespace feature, which allows you to break up the global name space
into distinct regions.
Chapter 11: References and the
Copy-Constructor. C++ pointers work like C pointers with the additional
benefit of stronger C++ type checking. C++ also provides an additional way to
handle addresses: from Algol and Pascal, C++ lifts the reference, which
lets the compiler handle the address manipulation while you use ordinary
notation. You'll also meet the copy-constructor, which controls the way
objects are passed into and out of functions by value. Finally, the C++
pointer-to-member is illuminated.
Chapter 12: Operator Overloading.
This feature is sometimes called “syntactic sugar;” it lets you
sweeten the syntax for using your type by allowing operators as well as function
calls. In this chapter you'll learn that operator overloading is just a
different type of function call and you'll learn how to write your own,
dealing with the sometimes-confusing uses of arguments, return types, and the
decision of whether to make an operator a member or friend.
Chapter 13: Dynamic Object
Creation. How many planes will an air-traffic system need to manage? How
many shapes will a CAD system require? In the general programming problem, you
can't know the quantity, lifetime, or type of objects needed by your
running program. In this chapter, you'll learn how C++'s new
and delete elegantly solve this problem by safely creating objects on the
heap. You'll also see how new and delete can be overloaded
in a variety of ways so you can control how storage is allocated and
released.
Chapter 14: Inheritance and
Composition. Data abstraction allows you to create new types from scratch,
but with composition and inheritance, you can create new types from existing
types. With composition, you assemble a new type using other types as pieces,
and with inheritance, you create a more specific version of an existing type. In
this chapter you'll learn the syntax, how to redefine functions, and the
importance of construction and destruction for inheritance and
composition.
Chapter 15: Polymorphism and virtual
Functions. On your own, you might take nine months to discover and
understand this cornerstone of OOP. Through small, simple examples, you'll
see how to create a family of types with inheritance and manipulate objects in
that family through their common base class. The virtual keyword allows
you to treat all objects in this family generically, which means that the bulk
of your code doesn't rely on specific type information. This makes your
programs extensible, so building programs and code maintenance is easier and
cheaper.
Chapter 16: Introduction to
Templates.Inheritance and composition allow you to reuse object
code, but that doesn't solve all of your reuse needs. Templates allow you
to reuse source code by providing the compiler with a way to substitute
type names in the body of a class or function. This supports the use of
container class libraries, which are important tools for the rapid,
robust development of object-oriented programs (the Standard C++ Library
includes a significant library of container classes). This chapter gives you a
thorough grounding in this essential subject.
Additional topics (and more advanced
subjects) are available in Volume 2 of this book, which can be downloaded from
the Web site
www.BruceEckel.com.
0-6 - 
Exercises
I've discovered that exercises are
exceptionally useful during a seminar to complete a student's
understanding, so you'll find a set at the end of each chapter. The number
of exercises has been greatly increased over the number in the first edition.

Many of the exercises are fairly simple
so that they can be finished in a reasonable amount of time in a classroom
situation or lab section while the instructor observes, making sure all students
are absorbing the material. Some exercises are a bit more challenging to keep
advanced students entertained. The bulk of the exercises are designed to be
solved in a short time and are intended only to test and polish your knowledge
rather than present major challenges (presumably, you'll find those on
your own - or more likely, they'll find
you).
0-6-1 - 
Exercise solutions
Solutions to selected exercises can be
found in the electronic document The Thinking in C++ Annotated Solution
Guide, available for a small fee from
www.BruceEckel.com.
0-7 - 
Source code
The
source code for this book is
copyrighted freeware, distributed via the Web site www.BruceEckel.com.
The copyright prevents you from republishing the code in
print media without permission, but you are granted the right to use it in many
other situations (see below).
The code is available in a zipped file,
designed to be extracted for any platform that has a “zip” utility
(most do; you can search the Internet to find a version for your platform if you
don't already have one installed). In the starting directory where you
unpacked the code you will find the following copyright notice:
//:! :Copyright.txt
Copyright (c) 2000, Bruce Eckel
Source code file from the book "Thinking in C++"
All rights reserved EXCEPT as allowed by the
following statements: You can freely use this file
for your own work (personal or commercial),
including modifications and distribution in
executable form only. Permission is granted to use
this file in classroom situations, including its
use in presentation materials, as long as the book
"Thinking in C++" is cited as the source. 
Except in classroom situations, you cannot copy
and distribute this code; instead, the sole
distribution point is http://www.BruceEckel.com 
(and official mirror sites) where it is
available for free. You cannot remove this
copyright and notice. You cannot distribute
modified versions of the source code in this
package. You cannot use this file in printed
media without the express permission of the
author. Bruce Eckel makes no representation about
the suitability of this software for any purpose.
It is provided "as is" without express or implied
warranty of any kind, including any implied
warranty of merchantability, fitness for a
particular purpose, or non-infringement. The entire
risk as to the quality and performance of the
software is with you. Bruce Eckel and the
publisher shall not be liable for any damages
suffered by you or any third party as a result of
using or distributing this software. In no event 
will Bruce Eckel or the publisher be liable for 
any lost revenue, profit, or data, or for direct,
indirect, special, consequential, incidental, or
punitive damages, however caused and regardless of
the theory of liability, arising out of the use of
or inability to use software, even if Bruce Eckel
and the publisher have been advised of the
possibility of such damages. Should the software
prove defective, you assume the cost of all
necessary servicing, repair, or correction. If you
think you've found an error, please submit the
correction using the form you will find at
www.BruceEckel.com. (Please use the same
form for non-code errors found in the book.)
///:~

You may use the code in your projects and
in the classroom as long as the copyright notice is
retained.
0-8 - 
Language standards
Throughout this book, when referring to
conformance to the ISO C standard, I will generally just say
‘C.' Only if it is
necessary to distinguish between Standard C and older, pre-Standard versions of 
C will I make a distinction.
At this writing the
C++ Standards
Committee was finished working on the language. Thus, I will use the term
Standard C++
 to refer to the standardized language. If I simply refer
to C++ you should assume I mean “Standard C++.”
There is some confusion over the actual
name of the C++ Standards Committee and the name of the standard itself. Steve
Clamage, the committee chair, clarified this:
There are two C++ standardization
committees: The NCITS (formerly X3) J16 committee and the ISO JTC1/SC22/WG14
committee. ANSI charters NCITS to create technical committees for developing
American national standards. 
J16 was chartered in 1989 to create an
American standard for C++. In about 1991 WG14 was chartered to create an
international standard. The J16 project was converted to a "Type I"
(International) project and subordinated to the ISO standardization effort.

The two committees meet at the same
time at the same location, and the J16 vote constitutes the American vote on
WG14. WG14 delegates technical work to J16. WG14 votes on the technical work of
J16. 
The C++ standard was originally
created as an ISO standard. ANSI later voted (as recommended by J16) to adopt
the ISO C++ standard as the American standard for C++.
Thus, ‘ISO' is the correct
way to refer to the C++
Standard.
0-8-1 - 
Language support
Your compiler may
not support all of the features discussed in this book, especially if you
don't have the newest version of the compiler. Implementing a language
like C++ is a Herculean task, and you can expect that the features will appear
in pieces rather than all at once. But if you attempt one of the examples in the
book and get a lot of errors from the compiler, it's not necessarily a bug
in the code or the compiler; it may simply not be implemented in your particular
compiler
yet.
0-9 - 
The book's CD ROM
The primary content of the CD ROM
packaged in the back of this book is a “seminar on
CD ROM” titled Thinking in C: Foundations for
Java & C++ by Chuck Allison (published by MindView, Inc., and also
available in quantities at www.BruceEckel.com). This contains many hours
of audio lectures and slides, and can be viewed on most computers if you have a
CD ROM player and a sound system. 
The goal of Thinking in C is to
take you carefully through the fundamentals of the C language. It focuses on the
knowledge necessary for you to be able to move on to the C++ or
Java languages instead of trying to make you an expert in
all the dark corners of C. (One of the reasons for using a higher-level language
like C++ or Java is precisely so we can avoid many of these dark corners.) It
also contains exercises and guided solutions. Keep in mind that because Chapter
3 of this book goes beyond the Thinking in C CD, the CD is not a
replacement for that chapter, but should be used instead as a preparation for
this book.
Please note that the CD ROM is
browser-based, so you should have a Web browser installed on your machine before
using
it.
0-10 - CD ROMs, seminars and consulting
There are
seminars-on-CD-ROM
planned to cover Volume 1 and Volume 2 of this book. These comprise many hours
of audio lectures by me that accompany slides that cover selected material from
each chapter in the book. They can be viewed on most computers if you have a CD
ROM player and a sound system. These CDs may be purchased at
www.BruceEckel.com, where you will find more information and sample
lectures.
My company, MindView, Inc., provides
public
hands-on training seminars based on the material in this book and also on
advanced topics. Selected material from each chapter represents a lesson, which
is followed by a monitored exercise period so each student receives personal
attention. We also provide on-site training,
consulting,
mentoring, and design and code walkthroughs. Information and sign-up forms for
upcoming seminars and other contact information can be found at
www.BruceEckel.com.
I am sometimes available for design
consulting, project evaluation and code walkthroughs. When I first began writing
about computers, my primary motivation was to increase my consulting activities,
because I find consulting to be challenging, educational, and one of my most
enjoyable experiences, professionally. Thus I will try my best to fit you into
my schedule, or to provide you with one of my associates (who are people that I
know well and trust, and often people who co-develop and teach seminars with
me).
0-11 - 
Errors
No matter how many tricks a writer uses
to detect errors, some always creep in and these often leap off the page to a
fresh reader. If you discover anything you believe to be an error, please use
the correction form you will find at www.BruceEckel.com. Your help is
appreciated.
0-12 - 
About the cover
The first edition of this book had my
face on the cover, but I originally wanted a cover for the second edition that
was more of a work of art like the Thinking in Java cover. For some
reason, C++ seems to me to suggest Art Deco with its simple curves and brushed
chrome. I had in mind something like those posters of ships and airplanes with
the long sweeping bodies.
My friend Daniel
Will-Harris, (www.Will-Harris.com) whom I first met in junior high school
choir class, went on to become a world-class designer and writer. He has done
virtually all of my designs, including the
cover for the first edition of this
book. During the cover design process, Daniel, unsatisfied with the progress we
were making, kept asking “How does this relate people to computers?”
We were stuck.
On a whim, with no particular outcome in
mind, he asked me to put my face on the scanner. Daniel had one of his graphics
programs (Corel Xara, his favorite) “autotrace” the scan of my face.
As he describes it, “Autotracing is the computer's way to turn a picture
into the kinds of lines and curves it really likes.” Then he played with
it until he had something that looked like a topographic map of my face, an
image that might be the way a computer could see people.
I took this image and photocopied it onto
watercolor paper (some color copiers can handle thick stock), and then started
creating lots of experiments by adding watercolor to the image. We selected the
ones we liked best, then Daniel scanned them back in and arranged them into the
cover, adding the text and other design elements. The whole process happened
over several months, mostly because of the time it took me to do the
watercolors. But I've especially enjoyed it because I got to participate
in the art on the cover, and because it gave me incentive to do more watercolors
(what they say about practice really is
true).
0-13 - 
Book design and
production
The book's interior design was
created by Daniel Will-Harris, who used to play with
rub-on letters in junior high school while he awaited the invention of computers
and desktop publishing. However, I produced the camera-ready pages myself, so
the typesetting errors are mine. Microsoft Word for Windows
Versions 8 and 9 were used to write the book and to create camera-ready pages,
including generating the table of contents and index. (I created a COM
automation server in Python, called from Word VBA macros, to aid me in index
marking.) Python (see www.Python.org) was used to create some of the
tools for checking the code, and would have been use for the code extraction
tool had I discovered it earlier.
I created the diagrams using
Visio - thanks to Visio Corporation for creating a useful
tool.
The body typeface
is Georgia and the headlines are in Verdana. The final camera-ready version was
produced in Adobe Acrobat 4 and taken directly to press from
that file - thanks very much to Adobe for creating a tool that allows
e-mailing camera-ready documents, as it enables multiple revisions to be made in
a single day rather than relying on my laser printer and overnight express
services. (We first tried the Acrobat process with Thinking in Java, and
I was able to upload the final version of that book to the printer in the U.S.
from South Africa.)
The HTML version was created by exporting
the Word document to RTF, then using RTF2HTML (see
http://www.sunpack.com/RTF/) to do most of the work of the HTML
conversion. (Thanks to Chris Hector for making such a useful, and especially
reliable, tool.) The resulting files were cleaned up using a custom Python
program that I hacked together, and the WMFs were converted to GIFs using
JASC PaintShop Pro 6 and its batch conversion tool (thanks to
JASC for solving so many problems for me with their excellent product). The
color syntax highlighting was added via a Perl script kindly contributed by
Zafir Anjum.
0-14 - 
Acknowledgements
First, thanks to everyone on the Internet
who submitted corrections and suggestions; you've been tremendously
helpful in improving the quality of this book, and I couldn't have done it
without you. Special thanks to John Cook.
The ideas and understanding in this book
have come from many sources: friends like Chuck Allison, Andrea Provaglio, Dan
Saks, Scott Meyers, Charles Petzold, and Michael Wilk; pioneers of the language
like Bjarne Stroustrup, Andrew Koenig, and Rob Murray; members of the C++
Standards Committee like Nathan Myers (who was particularly helpful and generous
with his insights), Bill Plauger, Reg Charney, Tom Penello, Tom Plum, Sam
Druker, and Uwe Steinmueller; people who have spoken in my C++ track at the
Software Development Conference; and often students in my seminars, who ask the
questions I need to hear in order to make the material more
clear.
A huge thank-you to my friend Gen
Kiyooka, whose company Digigami has provided me with a web
server.
My friend Richard Hale Shaw and I have
taught C++ together; Richard's insights and support have been very helpful
(and Kim's, too). Thanks also to KoAnn Vikoren, Eric Faurot, Jennifer
Jessup, Tara Arrowood, Marco Pardi, Nicole Freeman, Barbara Hanscome, Regina
Ridley, Alex Dunne, and the rest of the cast and crew at MFI.
A special thanks to all my teachers and
all my students (who are my teachers as well).
And for favorite writers, my deep
appreciation and sympathy for your efforts: John Irving, Neal Stephenson,
Robertson Davies (we shall miss you), Tom Robbins, William Gibson, Richard Bach,
Carlos Castaneda, and Gene Wolfe.
To Guido van Rossum, for inventing Python
and giving it selflessly to the world. You have enriched my life with your
contribution.
Thanks to the people at Prentice Hall:
Alan Apt, Ana Terry, Scott Disanno, Toni Holm, and my electronic copy-editor
Stephanie English. In marketing, Bryan Gambrel and Jennie Burger.

Sonda Donovan  helped with the production
of  the CD Rom. Daniel Will-Harris (of course) created the silkscreen design
that's on the Disc itself.
To all the great folks in Crested Butte,
thanks for making it a magical place, especially Al Smith (creator of the
wonderful Camp4 Coffee Garden), my neighbors Dave & Erika, Marsha at
Heg's Place bookstore, Pat & John at the Teocalli Tamale, Sam at the
Bakery Café, and Tiller for his help with audio research. And to all the
terrific people that hang out at Camp4 in and make my mornings
interesting.
The supporting cast of friends includes,
but is not limited to, Zack Urlocker, Andrew Binstock, Neil Rubenking, Kraig
Brockschmidt, Steve Sinofsky, JD Hildebrandt, Brian McElhinney, Brinkley Barr,
Larry O'Brien, Bill Gates at Midnight Engineering Magazine, Larry
Constantine, Lucy Lockwood, Tom Keffer, Dan Putterman, Gene Wang, Dave Mayer,
David Intersimone, Claire Sawyers, the Italians (Andrea Provaglio, Rossella
Gioia, Laura Fallai, Marco & Lella Cantu, Corrado, Ilsa and Christina
Giustozzi), Chris and Laura Strand (and Parker), the Almquists, Brad Jerbic,
Marilyn Cvitanic, the Mabrys, the Haflingers, the Pollocks, Peter Vinci, the
Robbins, the Moelters, Dave Stoner, Laurie Adams, the Cranstons, Larry Fogg,
Mike and Karen Sequeira, Gary Entsminger and Allison Brody, Kevin, Sonda, &
Ella Donovan, Chester and Shannon Andersen, Joe Lordi, Dave and Brenda Bartlett,
the Rentschlers, Lynn and Todd, and their families. And of course, Mom and
Dad.

1 - Introduction to Objects
The genesis of the computer
revolution was in a machine. The genesis of our programming languages thus tends
to look like that machine.
But computers are not so much machines as
they are mind amplification tools (“bicycles for the mind,” as Steve
Jobs is fond of saying) and a different kind of expressive medium. As a result,
the tools are beginning to look less like machines and more like parts of our
minds, and also like other expressive mediums such as writing, painting,
sculpture, animation, and filmmaking. Object-oriented programming is part of
this movement toward using the computer as an expressive
medium.
This chapter will introduce you to the
basic
concepts of object-oriented programming (OOP), including an overview of OOP
development methods. This chapter, and this book, assume
that you have had experience in a procedural programming language, although not
necessarily C. If you think you need more preparation in programming and the
syntax of C before tackling this book, you should work through the
“Thinking in C: Foundations for C++ and Java” training CD ROM, bound
in with this book and also available at www.BruceEckel.com.

This chapter is background and
supplementary material. Many people do not feel comfortable wading into
object-oriented programming without understanding the big picture first. Thus,
there are many concepts that are introduced here to give you a solid overview of
OOP. However, many other people don't get the big picture concepts until
they've seen some of the mechanics first; these people may become bogged
down and lost without some code to get their hands on. If you're part of
this latter group and are eager to get to the specifics of the language, feel
free to jump past this chapter - skipping it at this point will not
prevent you from writing programs or learning the language. However, you will
want to come back here eventually to fill in your knowledge so you can
understand why objects are important and how to design with
them.
1-1 - 
The progress of abstraction
All programming languages provide
abstractions. It can be argued that the complexity of the problems you're
able to solve is directly related to the kind and quality of
abstraction. By “kind” I mean, “What is
it that you are abstracting?” Assembly language is a small abstraction of
the underlying machine. Many so-called “imperative” languages that
followed (such as Fortran, BASIC, and C) were abstractions of assembly language.
These languages are big improvements over assembly language, but their primary
abstraction still requires you to think in terms of the structure of the
computer rather than the structure of the problem you are trying to solve. The
programmer must establish the association between the machine model (in the
“solution space,” which
is the place where you're modeling that problem, such as a computer) and
the model of the problem that is actually being solved (in the
“problem space,” which
is the place where the problem exists). The effort required to perform this
mapping, and the fact that it is extrinsic to the programming language, produces
programs that are difficult to write and expensive to maintain, and as a side
effect created the entire “programming methods”
industry.
The alternative to modeling the machine
is to model the problem you're trying to solve. Early languages such as
LISP and APL chose particular views of the world (“All problems are
ultimately lists” or “All problems are algorithmic”). PROLOG
casts all problems into chains of decisions. Languages have been created for
constraint-based programming and for programming exclusively by manipulating
graphical symbols. (The latter proved to be too restrictive.) Each of these
approaches is a good solution to the particular class of problem they're
designed to solve, but when you step outside of that domain they become awkward.

The object-oriented approach goes a step
farther by providing tools for the programmer to represent elements in the
problem space. This representation is general enough that the programmer is not
constrained to any particular type of problem. We refer to the elements in the
problem space and their representations in the solution space
as “objects.” (Of course, you will also need
other objects that don't have problem-space analogs.) The idea is that the
program is allowed to adapt itself to the lingo of the problem by adding new
types of objects, so when you read the code describing the solution,
you're reading words that also express the problem. This is a more
flexible and powerful language abstraction than what we've had before.
Thus, OOP allows you to describe the problem in terms of the problem, rather
than in terms of the computer where the solution will run. There's still a
connection back to the computer, though. Each object looks quite a bit like a
little computer; it has a state, and it has operations that you can ask it to
perform. However, this doesn't seem like such a bad analogy to objects in
the real world; they all have characteristics and behaviors. 
Some language designers have decided that
object-oriented programming by itself is not adequate to easily solve all
programming problems, and advocate the combination of various approaches into
multiparadigm programming
languages.(4)
Alan Kay summarized five
basic characteristics of Smalltalk,
the first successful object-oriented language and one of the languages upon
which C++ is based. These characteristics represent a pure approach to
object-oriented
programming:
		Everything is an
object. Think of an object as a fancy variable;
it stores data, but you can “make requests” to that object, asking
it to perform operations on itself. In theory, you can take any conceptual
component in the problem you're trying to solve (dogs, buildings,
services, etc.) and represent it as an object in your
program.
		A program is a bunch of objects
telling each other what to do by sending
messages. To make a request of an object, you
“send a message” to that object. More concretely, you can think of a
message as a request to call a function that belongs to a particular
object.
		Each object has its own memory made
up of other objects. Put another way, you create
a new kind of object by making a package containing existing objects. Thus, you
can build complexity in a program while hiding it behind the simplicity of
objects.
		Every object has a
type. Using the parlance, each object is an
instance of a class, in which “class” is synonymous
with “type.” The most important distinguishing characteristic of a
class is “What messages can you send to
it?”
		All objects of a particular type
can receive the same messages. This is actually
a loaded statement, as you will see later. Because an object of type
“circle” is also an object of type “shape,” a circle is
guaranteed to accept shape messages. This means you can write code that talks to
shapes and automatically handles anything that fits the description of a shape.
This substitutability is one of the most powerful concepts in
OOP.

1-2 - 
An object has an interface
Aristotle was probably the first to begin
a careful study of the concept of type; he spoke of “the class of
fishes and the class of birds.” The idea that all objects, while being
unique, are also part of a class of objects that have characteristics and
behaviors in common was used directly in the first object-oriented language,
Simula-67, with its fundamental keyword class that introduces a new type
into a program.
Simula,
as its name implies, was created for developing simulations such as the classic
“bank teller
problem(5).” In
this, you have a bunch of tellers, customers, accounts, transactions, and units
of money - a lot of “objects.” Objects that are identical
except for their state during a program's execution are grouped together
into “classes of objects” and that's where the
keyword class came from.
Creating abstract data types (classes) is a fundamental concept in
object-oriented programming. Abstract data types work almost exactly like
built-in types: You can create variables of a type (called objects or
instances in object-oriented parlance) and manipulate those variables
(called sending messages or
requests; you send a message and the object figures
out what to do with it). The members (elements) of each class share some
commonality: every account has a balance, every teller can accept a deposit,
etc. At the same time, each member has its own state, each account has a
different balance, each teller has a name. Thus, the tellers, customers,
accounts, transactions, etc., can each be represented with a unique entity in
the computer program. This entity is the object, and each object belongs to a
particular class that defines its characteristics and
behaviors.
So, although what we really do in
object-oriented programming is create new data types, virtually all
object-oriented programming languages use the “class” keyword. When
you see the word “type” think “class” and vice
versa(6).
Since a class describes a set of objects
that have identical characteristics (data elements) and behaviors
(functionality), a class is really a
data type because a floating point
number, for example, also has a set of characteristics and behaviors. The
difference is that a programmer defines a class to fit a problem rather than
being forced to use an existing data type that was designed to represent a unit
of storage in a machine. You extend the programming language by adding new data
types specific to your needs. The programming system welcomes the new classes
and gives them all the care and type-checking that it gives to built-in
types.
The object-oriented approach is not
limited to building simulations. Whether or not you agree that any program is a
simulation of the system you're designing, the use of OOP techniques can
easily reduce a large set of problems to a simple solution.
Once a class is established, you can make
as many objects of that class as you like, and then manipulate those objects as
if they are the elements that exist in the problem you are trying to solve.
Indeed, one of the challenges of object-oriented programming is to create a
one-to-one mapping between the elements in the problem space and objects in the
solution space.
But how do you get an object to do useful
work for you? There must be a way to make a request of the object so that it
will do something, such as complete a transaction, draw something on the screen
or turn on a switch. And each object can satisfy only certain requests. The
requests you can make of an object are defined by its interface, and the
type is what determines the interface. A simple example might be a
representation of a light bulb: 
[image: ]
Light lt;
lt.on();

The interface establishes what
requests you can make for a particular object. However, there must be code
somewhere to satisfy that request. This, along with the hidden data, comprises
the implementation. From a procedural programming
standpoint, it's not that complicated. A type has a function associated
with each possible request, and when you make a particular request to an object,
that function is called. This process is usually summarized by saying that you
“send a message” (make a request) to an object, and the object
figures out what to do with that message (it executes code).
Here, the name of the type/class is
Light, the name of this particular Light object is lt,and the requests that you can make of a Light object are to turn it
on, turn it off, make it brighter or make it dimmer. You create a Light
object by declaring a name (lt) for that object. To send a message to
the object, you state the name of the object and connect it to the message
request with a period (dot). From the standpoint of the user of a pre-defined
class, that's pretty much all there is to programming with
objects.
The diagram shown above follows the
format of the Unified Modeling
Language (UML). Each class is represented by a box, with the type name in
the top portion of the box, any data members that you care to describe in the
middle portion of the box, and the
member functions (the
functions that belong to this object, which receive any messages you send to
that object) in the bottom portion of the box. Often, only the name of the class
and the public member functions are shown in UML design diagrams, and so the
middle portion is not shown. If you're interested only in the class name,
then the bottom portion doesn't need to be shown,
either.
1-3 - 
The hidden implementation
It is helpful to break up the playing
field into class creators (those who create new
data types) and client
programmers(7)
(the class consumers who use the data types in their applications). The goal of
the client programmer is to collect a toolbox full of classes to use for rapid
application development. The goal of the class creator is to build a class that
exposes only what's necessary to the client programmer and keeps
everything else hidden. Why? Because if it's hidden, the client programmer
can't use it, which means that the class creator can change the hidden
portion at will without worrying about the impact to anyone else. The hidden
portion usually represents the tender insides of an object that could easily be
corrupted by a careless or uninformed client programmer, so hiding the
implementation reduces program bugs. The concept of
implementation hiding cannot be
overemphasized.
In any relationship it's important
to have boundaries that are respected by all parties involved. When you create a
library, you establish a relationship with the clientprogrammer, who is
also a programmer, but one who is putting together an application by using your
library, possibly to build a bigger library.
If all the members of a class are
available to everyone, then the client programmer can do anything with that
class and there's no way to enforce rules. Even though you might really
prefer that the client programmer not directly manipulate some of the members of
your class, without access control there's no way to prevent it.
Everything's naked to the world.
So the first reason for access control is
to keep client programmers' hands off portions they shouldn't touch
- parts that are necessary for the internal machinations of the data type
but not part of the interface that users need in order to solve their particular
problems. This is actually a service to users because they can easily see
what's important to them and what they can ignore.
The second reason for access control is
to allow the library designer to change the internal workings of the class
without worrying about how it will affect the client programmer. For example,
you might implement a particular class in a simple fashion to ease development,
and then later discover that you need to rewrite it in order to make it run
faster. If the interface and implementation are clearly separated and protected,
you can accomplish this easily and require only a relink by the
user.
C++ uses three explicit keywords to set
the boundaries in a class: public, private, and protected.
Their use and meaning are quite straightforward. These access specifiers
determine
who can use the definitions that follow. public
means the following definitions are available to
everyone. The private keyword, on the other hand,
means that no one can access those definitions except you, the creator of the
type, inside member functions of that type. private is a brick wall
between you and the client programmer. If someone tries to access a
private member, they'll get a compile-time error.
protected acts just like private, with the
exception that an inheriting class has access to protected members, but
not private members. Inheritance will be introduced
shortly.
1-4 - 
Reusing the implementation
Once a class has been created and tested,
it should (ideally) represent a useful unit of code. It turns out that this
reusability is not nearly so easy to achieve as many
would hope; it takes experience and insight to produce a good design. But once
you have such a design, it begs to be reused. Code reuse is one of the greatest
advantages that object-oriented programming languages provide.
The simplest way to reuse a class is to
just use an object of that class directly, but you can also place an object of
that class inside a new class. We call this “creating a
member object.” Your new
class can be made up of any number and type of other objects, in any combination
that you need to achieve the functionality desired in your new class. Because
you are composing a new class from existing classes, this concept is called
composition (or more generally,
aggregation). Composition is often referred to as
a “has-a” relationship, as in “a car
has an engine.”
[image: ]
(The above UML
diagram indicates composition with the filled diamond, which states there is one
car. I will typically use a simpler form: just a line, without the diamond, to
indicate an
association.(8))
Composition comes with a great deal of
flexibility. The member objects of your new class are usually private, making
them inaccessible to the client programmers who are using the class. This allows
you to change those members without disturbing existing client code. You can
also change the member objects at runtime, to dynamically change the behavior of
your program. Inheritance, which is described next, does not have this
flexibility since the compiler must place compile-time restrictions on classes
created with inheritance.
Because inheritance is so important in
object-oriented programming it is often highly emphasized, and the new
programmer can get the idea that inheritance should be used everywhere. This can
result in awkward and overly-complicated designs. Instead, you should first look
to composition when creating new classes, since it is simpler and more flexible.
If you take this approach, your designs will stay cleaner. Once you've had
some experience, it will be reasonably obvious when you need
inheritance.
1-5 - Inheritance : reusing the interface
By itself, the idea of an object is a
convenient tool. It allows you to package data and functionality together by
concept, so you can represent an appropriate problem-space idea rather
than being forced to use the idioms of the underlying machine. These concepts
are expressed as fundamental units in the programming language by using the
class
keyword.
It seems a pity, however, to go to all
the trouble to create a class and then be forced to create a brand new one that
might have similar functionality. It's nicer if we can take the existing
class, clone it, and then make additions and modifications to the clone. This is
effectively what you get with inheritance, with
the exception that if the original class (called the base or super
or parent class) is changed, the modified “clone” (called the
derived or inherited or sub or childclass)
also reflects those changes.
[image: ]
(The arrow in the above UML diagram
points from the derived class to the base class. As you will see, there can be
more than one derived class.)
A type does more than describe the
constraints on a set of objects; it also has a relationship with other types.
Two types can have characteristics and behaviors in common, but one type may
contain more characteristics than another and may also handle more messages (or
handle them differently). Inheritance expresses this similarity between types
using the concept of base types
and derived types. A base type
contains all of the characteristics and behaviors that are shared among the
types derived from it. You create a base type to represent the core of your
ideas about some objects in your system. From the base type, you derive other
types to express the different ways that this core can be
realized.
For example, a trash-recycling machine
sorts pieces of trash. The base type is “trash,” and each piece of
trash has a weight, a value, and so on, and can be shredded, melted, or
decomposed. From this, more specific types of trash are derived that may have
additional characteristics (a bottle has a color) or behaviors (an aluminum can
may be crushed, a steel can is magnetic). In addition, some behaviors may be
different (the value of paper depends on its type and condition). Using
inheritance, you can build a type hierarchy that expresses the problem
you're trying to solve in terms of its types.
A second example is the classic
“shape” example, perhaps used in a
computer-aided design system or game simulation. The base type is
“shape,” and each shape has a size, a color, a position, and so on.
Each shape can be drawn, erased, moved, colored, etc. From this, specific types
of shapes are derived (inherited): circle, square, triangle, and so on, each of
which may have additional characteristics and behaviors. Certain shapes can be
flipped, for example. Some behaviors may be different, such as when you want to
calculate the area of a shape. The type hierarchy embodies both the similarities
and differences between the shapes.
[image: ]
Casting the solution in the same terms as
the problem is tremendously beneficial because you don't need a lot of
intermediate models to get from a description of the problem to a description of
the solution. With objects, the type hierarchy is the primary model, so you go
directly from the description of the system in the real world to the description
of the system in code. Indeed, one of the difficulties people have with
object-oriented design is that it's too simple to get from the beginning
to the end. A mind trained to look for complex solutions is often stumped by
this simplicity at first.
When you inherit from an existing type,
you create a new type. This new type contains not only all the members of the
existing type (although the private ones are hidden away and
inaccessible), but more importantly it duplicates the interface of the base
class. That is, all the messages you can send to objects of the base class you
can also send to objects of the derived class. Since we know the type of a class
by the messages we can send to it, this means that the derived class is the
same type as the base class. In the previous example, “a circle is a
shape.” This type equivalence via inheritance is one of the fundamental
gateways in understanding the meaning of object-oriented
programming.
Since both the base class and derived
class have the same interface, there must be some implementation to go along
with that interface. That is, there must be some code to execute when an object
receives a particular message. If you simply inherit a class and don't do
anything else, the methods from the base-class interface come right along into
the derived class. That means objects of the derived class have not only the
same type, they also have the same behavior, which isn't particularly
interesting.
You have two ways to differentiate your
new derived class from the original base class. The first is quite
straightforward: You simply add brand new functions to the derived class. These
new functions are not part of the base class interface. This means that the base
class simply didn't do as much as you wanted it to, so you added more
functions. This simple and primitive use for
inheritance is, at times, the
perfect solution to your problem. However, you should look closely for the
possibility that your base class might also need these additional functions.
This process of discovery and iteration of your design happens regularly in
object-oriented programming.
[image: ]
Although inheritance may sometimes imply
that you are going to add new functions to the interface, that's not
necessarily true. The second and more important way to differentiate your new
class is to change the behavior of an existing base-class function. This
is referred to as
overriding that
function.
[image: ]
To override a function, you simply create
a new definition for the function in the derived class. You're saying,
“I'm using the same interface function here, but I want it to do
something different for my new
type.”
1-5-1 - 
Is-a vs. is-like-a relationships
There's a certain debate that can
occur about inheritance: Should inheritance override only base-class
functions (and not add new member functions that aren't in the base
class)? This would mean that the derived type is exactly the same type as
the base class since it has exactly the same interface. As a result, you can
exactly substitute an object of the derived class for an object of the base
class. This can be thought of as pure
substitution, and it's often referred to as the
substitution principle. In a sense, this is the
ideal way to treat inheritance. We often refer to the relationship between the
base class and derived classes in this case as an is-a relationship,
because you can say “a circle is a shape.” A test for
inheritance is to determine whether you can state the is-a relationship about
the classes and have it make sense.
There are times when you must add new
interface elements to a derived type, thus extending the interface and creating
a new type. The new type can still be substituted for the base type, but the
substitution isn't perfect because your new functions are not accessible
from the base type. This can be described as an is-like-a relationship;
the new type has the interface of the old type but it also contains other
functions, so you can't really say it's exactly the same. For
example, consider an air conditioner. Suppose your house is wired with all the
controls for cooling; that is, it has an interface that allows you to control
cooling. Imagine that the air conditioner breaks down and you replace it with a
heat pump, which can both heat and cool. The heat pump is-like-an air
conditioner, but it can do more. Because the control system of your house is
designed only to control cooling, it is restricted to communication with the
cooling part of the new object. The interface of the new object has been
extended, and the existing system doesn't know about anything except the
original interface.
[image: ]
Of course, once you see this design it
becomes clear that the base class “cooling system” is not general
enough, and should be renamed to “temperature control system” so
that it can also include heating - at which point the substitution
principle will work. However, the diagram above is an example of what can happen
in design and in the real world. 
When you see the substitution principle
it's easy to feel like this approach (pure substitution) is the only way
to do things, and in fact it is nice if your design works out that way.
But you'll find that there are times when it's equally clear that
you must add new functions to the interface of a derived class. With inspection
both cases should be reasonably
obvious.
1-6 - Interchangeable objects with polymorphism
When dealing with type hierarchies, you
often want to treat an object not as the specific type that it is but instead as
its base type. This allows you to write code that doesn't depend on
specific types. In the shape example, functions manipulate generic shapes
without respect to whether they're circles, squares, triangles, and so on.
All shapes can be drawn, erased, and moved, so these functions simply send a
message to a shape object; they don't worry about how the object copes
with the message.
Such code is unaffected by the addition
of new types, and adding new types is the most common way to extend an
object-oriented program to handle new situations. For example, you can derive a
new subtype of shape called pentagonwithout modifying the functions that
deal only with generic shapes. This ability to extend a program easily by
deriving new subtypes is important because it greatly improves designs while
reducing the cost of software maintenance.
There's a problem, however, with
attempting to treat derived-type objects as their generic base types (circles as
shapes, bicycles as vehicles, cormorants as birds, etc.). If a function is going
to tell a generic shape to draw itself, or a generic vehicle to steer, or a
generic bird to move, the compiler cannot know at compile-time precisely what
piece of code will be executed. That's the whole point - when the
message is sent, the programmer doesn't want to know what piece of
code will be executed; the draw function can be applied equally to a circle, a
square, or a triangle, and the object will execute the proper code depending on
its specific type. If you don't have to know what piece of code will be
executed, then when you add a new subtype, the code it executes can be different
without requiring changes to the function call. Therefore, the compiler cannot
know precisely what piece of code is executed, so what does it do? For example,
in the following diagram the BirdController object just works with
generic Bird objects, and does not know what exact type they are. This is
convenient from BirdController's perspective, because it
doesn't have to write special code to determine the exact type of
Bird it's working with, or that Bird's behavior. So
how does it happen that, when move( ) is called while ignoring the
specific type of Bird, the right behavior will occur (a Goose
runs, flies, or swims, and a Penguin runs or swims)?
[image: ]
The answer is the primary twist in
object-oriented programming: The compiler cannot make a function call in the
traditional sense. The function call generated by a non-OOP compiler causes what
is called early binding, a
term you may not have heard before because you've never thought about it
any other way. It means the compiler generates a call to a specific function
name, and the linker resolves this call to the absolute address of the code to
be executed. In OOP, the program cannot determine the address of the code until
runtime, so some other scheme is necessary when a message is sent to a generic
object.
To solve the problem, object-oriented
languages use the concept of
late binding. When you send
a message to an object, the code being called isn't determined until
runtime. The compiler does ensure that the function exists and performs type
checking on the arguments and return value (a language in which this isn't
true is called weakly
typed), but it doesn't know the exact code to
execute.
To perform late binding, the C++ compiler
inserts a special bit of code in lieu of the absolute call. This code calculates
the address of the function body, using information stored in the object (this
process is covered in great detail in Chapter 15). Thus, each object can behave
differently according to the contents of that special bit of code. When you send
a message to an object, the object actually does figure out what to do with that
message.
You state that you want a function to
have the flexibility of late-binding properties using the
keyword virtual. You
don't need to understand the mechanics of virtual to use it, but
without it you can't do object-oriented programming in C++. In C++, you
must remember to add the virtual keyword because, by default, member
functions are not dynamically bound. Virtual functions allow you to
express the differences in behavior of classes in the same family. Those
differences are what cause polymorphic behavior.
Consider the shape example. The family of
classes (all based on the same uniform interface) was diagrammed earlier in the
chapter. To demonstrate polymorphism, we want to write a single piece of code
that ignores the specific details of type and talks only to the base class. That
code is decoupled from type-specific information,
and thus is simpler to write and easier to understand. And, if a new type
- a Hexagon, for example -is added through
inheritance, the code you write will work just as well for the new type of
Shape as it did on the existing types. Thus, the program is
extensible.
If you write a function in C++ (as you
will soon learn how to do):
void doStuff(Shape& s) {
  s.erase();
  // ...
  s.draw();
}

This function speaks to any Shape,
so it is independent of the specific type of object that it's drawing and
erasing (the ‘&' means “Take the address of the
object that's passed to doStuff( ),” but it's not
important that you understand the details of that right now). If in some other
part of the program we use the doStuff( ) function:
Circle c;
Triangle t;
Line l;
doStuff(c);
doStuff(t);
doStuff(l);

The calls to doStuff( )
automatically work right, regardless of the exact type of the object.

This is actually a pretty amazing trick.
Consider the line:
doStuff(c);

What's happening here is that a
Circle is being passed into a function that's expecting a
Shape. Since a Circle is a Shape it can be treated
as one by doStuff( ). That is, any message that
doStuff( ) can send to a Shape, a Circle can accept.
So it is a completely safe and logical thing to do.
We call this process of treating a
derived type as though it were its base type
upcasting. The name cast
is used in the sense of casting into a mold and the up comes from the
way the inheritance diagram is
typically arranged, with the base type at the top and the derived classes
fanning out downward. Thus, casting to a base type is moving up the inheritance
diagram: “upcasting.”
[image: ]
An object-oriented program contains some
upcasting somewhere, because that's how you decouple yourself from knowing
about the exact type you're working with. Look at the code in
doStuff( ):
  s.erase();
  // ...
  s.draw();

Notice that it doesn't say
“If you're a Circle, do this, if you're a
Square, do that, etc.” If you write that kind of code, which checks
for all the possible types that a Shape can actually be, it's messy
and you need to change it every time you add a new kind of Shape. Here,
you just say “You're a shape, I know you can erase( )
and draw( ) yourself, do it, and take care of the details
correctly.” 
What's impressive about the code in
doStuff( ) is that, somehow, the right thing happens. Calling
draw( ) for Circle causes different code to be executed than
when calling draw( ) for a Square or a Line, but when
the draw( ) message is sent to an anonymous Shape, the
correct behavior occurs based on the actual type of the Shape. This is
amazing because, as mentioned earlier, when the C++ compiler is compiling the
code for doStuff( ), it cannot know exactly what types it is dealing
with. So ordinarily, you'd expect it to end up calling the version of
erase( ) and draw( ) for Shape, and not for the
specific Circle, Square, or Line. And yet the right thing
happens because of polymorphism. The compiler and runtime system handle the
details; all you need to know is that it happens and more importantly how to
design with it. If a member function is virtual, thenwhen you
send a message to an object, the object will do the right thing, even when
upcasting is involved.
1-7 - 
Creating and destroying objects
Technically, the domain of OOP is
abstract data typing, inheritance, and polymorphism, but other issues can be at
least as important. This section gives an overview of these
issues.
Especially important is the way objects
are created and destroyed. Where is the data for an object and how is the
lifetime of that object controlled? Different programming languages use
different philosophies here. C++ takes the approach that control of efficiency
is the most important issue, so it gives the programmer a choice. For maximum
runtime speed, the storage and lifetime can be determined while the program is
being written, by placing the objects on the stack or in
static storage. The stack is an
area in memory that is used directly by the microprocessor to store data during
program execution. Variables on the stack are sometimes called
automatic or
scoped variables. The
static storage area is simply a fixed patch of memory that is allocated before
the program begins to run. Using the stack or static storage area places a
priority on the speed of storage allocation and release, which can be valuable
in some situations. However, you sacrifice flexibility because you must know the
exact quantity, lifetime, and type of objects while you're writing
the program. If you are trying to solve a more general problem, such as
computer-aided design, warehouse management, or air-traffic control, this is too
restrictive.
The second approach is to create objects
dynamically in a pool of memory
called the heap. In this approach you don't
know until runtime how many objects you need, what their lifetime is, or what
their exact type is. Those decisions are made at the spur of the moment while
the program is running. If you need a new object, you simply make it on the heap
when you need it, using the new
keyword. When you're finished with the storage, you must release it
using the delete keyword.

Because the storage is managed
dynamically at runtime, the amount of time required to allocate storage on the
heap is significantly longer than the time to create storage on the stack.
(Creating storage on the stack is often a single microprocessor instruction to
move the stack pointer down, and another to move it back up.) The dynamic
approach makes the generally logical assumption that objects tend to be
complicated, so the extra overhead of finding storage and releasing that storage
will not have an important impact on the creation of an object. In addition, the
greater flexibility is essential to solve general programming
problems.
There's another issue, however, and
that's the lifetime of an
object. If you create an object on the stack or in static storage, the compiler
determines how long the object lasts and can automatically destroy it. However,
if you create it on the heap, the compiler has no knowledge of its lifetime. In
C++, the programmer must determine programmatically when to destroy the object,
and then perform the destruction using the delete keyword. As an
alternative, the environment can provide a feature called a
garbage collector that
automatically discovers when an object is no longer in use and destroys it. Of
course, writing programs using a garbage collector is much more convenient, but
it requires that all applications must be able to tolerate the existence of the
garbage collector and the overhead for garbage collection. This does not meet
the design requirements of the C++ language and so it was not included, although
third-party garbage collectors exist for
C++.
1-8 - Exception handling : dealing with errors
Ever since the beginning of programming
languages, error handling has been one of the most difficult issues. Because
it's so hard to design a good error-handling scheme, many languages simply
ignore the issue, passing the problem on to library designers who come up with
halfway measures that can work in many situations but can easily be
circumvented, generally by just ignoring them. A major problem with most
error-handling schemes is that they rely on programmer vigilance in following an
agreed-upon convention that is not enforced by the language. If programmers are
not vigilant, which often occurs when they are in a hurry, these schemes can
easily be forgotten.
Exception
handling wires error handling directly into the programming language and
sometimes even the operating system. An exception is an object that is
“thrown” from the site of the error and can be “caught”
by an appropriate exception handler designed to handle that particular
type of error. It's as if exception handling is a different, parallel path
of execution that can be taken when things go wrong. And because it uses a
separate execution path, it doesn't need to interfere with your
normally-executing code. This makes that code simpler to write since you
aren't constantly forced to check for errors. In addition, a thrown
exception is unlike an error value that's returned from a function or a
flag that's set by a function in order to indicate an error condition
- these can be ignored. An exception cannot be ignored so it's
guaranteed to be dealt with at some point. Finally, exceptions provide a way to
recover reliably from a bad situation. Instead of just exiting the program, you
are often able to set things right and restore the execution of a program, which
produces much more robust systems.
It's worth noting that exception
handling isn't an object-oriented feature, although in object-oriented
languages the exception is normally represented with an object. Exception
handling existed before object-oriented languages.
Exception handling is only lightly
introduced and used in this Volume; Volume 2 (available from
www.BruceEckel.com) has thorough coverage of exception
handling.
1-9 - 
Analysis and
design
The object-oriented paradigm is a new and
different way of thinking about programming and many folks have trouble at first
knowing how to approach an OOP project. Once you know that everything is
supposed to be an object, and as you learn to think more in an object-oriented
style, you can begin to create “good” designs that take advantage of
all the benefits that OOP has to offer.
A method
(often called a methodology)is a set of processes and heuristics
used to break down the complexity of a programming problem. Many OOP methods
have been formulated since the dawn of object-oriented programming. This section
will give you a feel for what you're trying to accomplish when using a
method.
Especially in OOP, methodology is a field
of many experiments, so it is important to understand what problem the method is
trying to solve before you consider adopting one. This is particularly true with
C++, in which the programming language is intended to reduce the complexity
(compared to C) involved in expressing a program. This may in fact alleviate the
need for ever-more-complex methodologies. Instead, simpler ones may suffice in
C++ for a much larger class of problems than you could handle using simple
methodologies with procedural languages.
It's also important to realize that
the term “methodology” is often too grand and promises too much.
Whatever you do now when you design and write a program is a method. It may be
your own method, and you may not be conscious of doing it, but it is a process
you go through as you create. If it is an effective process, it may need only a
small tune-up to work with C++. If you are not satisfied with your productivity
and the way your programs turn out, you may want to consider adopting a formal
method, or choosing pieces from among the many formal methods.
While you're going through the
development process, the most important issue is this: Don't get lost.
It's easy to do. Most of the analysis and design
methods are intended to solve the largest of problems.
Remember that most projects don't fit into that category, so you can
usually have successful analysis and design with a relatively small subset of
what a method
recommends(9).
But some sort of process, no matter how limited, will generally get you on your
way in a much better fashion than simply beginning to code.
It's also easy to get stuck, to
fall into “analysis
paralysis,” where you feel like you can't move forward because you
haven't nailed down every little detail at the current stage. Remember, no
matter how much analysis you do, there are some things about a system that
won't reveal themselves until design time, and more things that
won't reveal themselves until you're coding, or not even until a
program is up and running. Because of this, it's crucial to move fairly
quickly through analysis and design, and to implement a test of the proposed
system.
This point is worth emphasizing. Because
of the history we've had with procedural languages, it is commendable that
a team will want to proceed carefully and understand every minute detail before
moving to design and implementation. Certainly, when creating a DBMS, it pays to
understand a customer's needs thoroughly. But a DBMS is in a class of
problems that is very well-posed and well-understood; in many such programs, the
database structure is the problem to be tackled. The class of programming
problem discussed in this chapter is of the “wild-card” (my term)
variety, in which the solution isn't simply re-forming a well-known
solution, but instead involves one or more
“wild-card factors” - elements for
which there is no well-understood previous solution, and for which research is
necessary(10).
Attempting to thoroughly analyze a wild-card problem before moving into design
and implementation results in analysis paralysis because you don't have
enough information to solve this kind of problem during the analysis phase.
Solving such a problem requires iteration through the whole cycle, and that
requires risk-taking behavior (which makes sense, because you're trying to
do something new and the potential rewards are higher). It may seem like the
risk is compounded by “rushing” into a preliminary implementation,
but it can instead reduce the risk in a wild-card project because you're
finding out early whether a particular approach to the problem is viable.
Product development is risk management.
It's often proposed that you
“build one to throw away.” With OOP, you may still throw part
of it away, but because code is encapsulated into classes, during the first
iteration you will inevitably produce some useful class designs and develop some
worthwhile ideas about the system design that do not need to be thrown away.
Thus, the first rapid pass at a problem not only produces critical information
for the next analysis, design, and implementation iteration, it also creates a
code foundation for that iteration.
That said, if you're looking at a
methodology that contains tremendous detail and suggests many steps and
documents, it's still difficult to know when to stop. Keep in mind what
you're trying to discover:
		What are the objects? (How
do you partition your project into its component
parts?)
		What are
their interfaces? (What messages do you need to be able to send to each
object?)

If you come up with
nothing more than the objects and their interfaces, then you can write a
program. For various reasons you might need more descriptions and documents than
this, but you can't get away with any less.
The process can be undertaken in five
phases, and a phase 0 that is just the initial commitment to using some kind of
structure.
1-9-1 - 
Phase 0: Make a plan
You must first decide what steps
you're going to have in your process. It sounds simple (in fact,
all of this sounds simple) and yet people often don't make this
decision before they start coding. If your plan is “let's jump in
and start coding,” fine. (Sometimes that's appropriate when you have
a well-understood problem.) At least agree that this is the
plan.
You might also decide at this phase that
some additional process structure is necessary, but not the whole nine yards.
Understandably enough, some programmers like to work in “vacation
mode” in which no structure is imposed on the process of developing their
work; “It will be done when it's done.” This can be appealing
for awhile, but I've found that having a few milestones along the way
helps to focus and galvanize your efforts around those milestones instead of
being stuck with the single goal of “finish the project.” In
addition, it divides the project into more bite-sized pieces and makes it seem
less threatening (plus the milestones offer more opportunities for
celebration).
When I began to study story structure (so
that I will someday write a novel) I was initially resistant to the idea of
structure, feeling that when I wrote I simply let it flow onto the page. But I
later realized that when I write about computers the structure is clear enough
so that I don't think much about it. But I still structure my work, albeit
only semi-consciously in my head. So even if you think that your plan is to just
start coding, you still somehow go through the subsequent phases while asking
and answering certain questions.

The mission statement
Any system you build, no matter how
complicated, has a fundamental purpose, the business that it's in, the
basic need that it satisfies. If you can look past the user interface, the
hardware- or system-specific details, the coding algorithms and the efficiency
problems, you will eventually find the core of its being, simple and
straightforward. Like the so-called
high concept from a
Hollywood movie, you can describe it in one or two sentences. This pure
description is the starting point.
The high concept is quite important
because it sets the tone for your project; it's a mission statement. You
won't necessarily get it right the first time (you may be in a later phase
of the project before it becomes completely clear), but keep trying until it
feels right. For example, in an air-traffic control system you may start out
with a high concept focused on the system that you're building: “The
tower program keeps track of the aircraft.” But consider what happens when
you shrink the system to a very small airfield; perhaps there's only a
human controller or none at all. A more useful model won't concern the
solution you're creating as much as it describes the problem:
“Aircraft arrive, unload, service and reload, and
depart.”
1-9-2 - 
Phase 1: What are we making?
In the previous generation of program
design (called procedural design), this is called “creating the
requirements analysis and
system
specification.” These, of course, were places to get lost;
intimidatingly-named documents that could become big projects in their own
right. Their intention was good, however. The requirements analysis says
“Make a list of the guidelines we will use to know when the job is done
and the customer is satisfied.” The system specification says
“Here's a description of what the program will do (not
how) to satisfy the requirements.” The requirements analysis is
really a contract between you and the customer (even if the customer works
within your company or is some other object or system). The system specification
is a top-level exploration into the problem and in some sense a discovery of
whether it can be done and how long it will take. Since both of these will
require consensus among people (and because they will usually change over time),
I think it's best to keep them as bare as possible - ideally, to
lists and basic diagrams - to save time. You might have other constraints
that require you to expand them into bigger documents, but by keeping the
initial document small and concise, it can be created in a few sessions of group
brainstorming with a leader who dynamically creates the description. This not
only solicits input from everyone, it also fosters initial buy-in and agreement
by everyone on the team. Perhaps most importantly, it can kick off a project
with a lot of enthusiasm.
It's necessary to stay focused on
the heart of what you're trying to accomplish in this phase: determine
what the system is supposed to do. The most valuable tool for this is a
collection of what are called “use cases.”
Use cases identify key features in the system that will reveal some of the
fundamental classes you'll be using. These are essentially descriptive
answers to questions
like(11):
		"Who will use this system?"

		"What can those
actors do with the system?"  

		"How does this actor
do that with this
system?"
		"How else
might this work if someone else were doing this, or if the same actor had a
different objective?" (to reveal
variations)
		"What
problems might happen while doing this with the system?" (to reveal
exceptions)

If you are
designing an auto-teller, for example, the use case for a particular aspect of
the functionality of the system is able to describe what the auto-teller does in
every possible situation. Each of these “situations” is referred to
as a scenario, and a use case can be considered a
collection of scenarios. You can think of a scenario as a question that starts
with: “What does the system do if...?” For example, “What does
the auto-teller do if a customer has just deposited a check within 24 hours and
there's not enough in the account without the check to provide the desired
withdrawal?” 
Use case diagrams
are intentionally simple to prevent you from getting bogged down in system
implementation details prematurely:
[image: ]
Each stick person represents an
“actor,” which is typically a human or some
other kind of free agent. (These can even be other computer systems, as is the
case with “ATM.”) The box represents the boundary of your system.
The ellipses represent the use cases, which are descriptions of valuable work
that can be performed with the system. The lines between the actors and the use
cases represent the interactions.
It doesn't matter how the system is
actually implemented, as long as it looks like this to the
user.
A use case does not need to be terribly
complex, even if the underlying system is complex. It is only intended to show
the system as it appears to the user. For example:
[image: ]
The use cases produce the requirements
specifications by determining all the interactions that the user may have with
the system. You try to discover a full set of use cases for your system, and
once you've done that you have the core of what the system is supposed to
do. The nice thing about focusing on use cases is that they always bring you
back to the essentials and keep you from drifting off into issues that
aren't critical for getting the job done. That is, if you have a full set
of use cases you can describe your system and move onto the next phase. You
probably won't get it all figured out perfectly on the first try, but
that's OK. Everything will reveal itself in time, and if you demand a
perfect system specification at this point you'll get
stuck.
If you get stuck, you can kick-start this
phase by using a rough approximation tool: describe the system in a few
paragraphs and then look for nouns and verbs. The nouns can suggest actors,
context of the use case (e.g. “lobby”), or artifacts manipulated in
the use case. Verbs can suggest interactions between actors and use cases, and
specify steps within the use case. You'll also discover that nouns and
verbs produce objects and messages during the design phase (and note that use
cases describe interactions between subsystems, so the “noun and
verb” technique can be used only as a brainstorming tool as it does not
generate use cases)(12).
The boundary between a use case and an
actor can point out the existence of a
user interface, but it does not
define such a user interface. For a process of defining and creating user
interfaces, see Software for Use by Larry Constantine and Lucy Lockwood,
(Addison Wesley Longman, 1999) or go to www.ForUse.com.
Although it's a black art, at this
point some kind of basic scheduling is important. You now
have an overview of what you're building so you'll probably be able
to get some idea of how long it will take. A lot of factors come into play here.
If you estimate a long schedule then the company might decide not to build it
(and thus use their resources on something more reasonable - that's
a good thing). Or a manager might have already decided how long the
project should take and will try to influence your estimate. But it's best
to have an honest schedule from the beginning and deal with the tough decisions
early. There have been a lot of attempts to come up with accurate scheduling
techniques (like techniques to predict the stock market), but probably the best
approach is to rely on your experience and intuition. Get a gut feeling for how
long it will really take, then double that and add 10 percent. Your gut feeling
is probably correct; you can get something working in that time. The
“doubling” will turn that into something decent, and the 10 percent
will deal with the final polishing and
details(13).
However you want to explain it, and regardless of the moans and manipulations
that happen when you reveal such a schedule, it just seems to work out that
way.
1-9-3 - 
Phase 2: How will we build it?
In this phase you must come up with a
design that describes what the classes look like and how they will interact. An
excellent technique in determining classes and interactions is the
Class-Responsibility-Collaboration
(CRC) card. Part of the value of this tool is that it's so low-tech: you
start out with a set of blank 3” by 5” cards, and you write on them.
Each card represents a single class, and on the card you write:
		The name of the class.
It's important that this name capture the essence of what the class does,
so that it makes sense at a
glance.
		The
“responsibilities” of the class: what it should do. This can
typically be summarized by just stating the names of the member functions (since
those names should be descriptive in a good design), but it does not preclude
other notes. If you need to seed the process, look at the problem from a lazy
programmer's standpoint: What objects would you like to magically appear
to solve your
problem?
		The
“collaborations” of the class: what other classes does it interact
with? “Interact” is an intentionally broad term; it could mean
aggregation or simply that some other object exists that will perform services
for an object of the class. Collaborations should also consider the audience for
this class. For example, if you create a class Firecracker, who is going
to observe it, a Chemist or a Spectator? The former will want to
know what chemicals go into the construction, and the latter will respond to the
colors and shapes released when it
explodes.

You may feel like
the cards should be bigger because of all the information you'd like to
get on them, but they are intentionally small, not only to keep your classes
small but also to keep you from getting into too much detail too early. If you
can't fit all you need to know about a class on a small card, the class is
too complex (either you're getting too detailed, or you should create more
than one class). The ideal class should be understood at a glance. The idea of
CRC cards is to assist you in coming up with a first cut of the design so that
you can get the big picture and then refine your design.
One of the great benefits of CRC cards is
in communication. It's best done real-time, in a group, without computers.
Each person takes responsibility for several classes (which at first have no
names or other information). You run a live simulation by solving one scenario
at a time, deciding which messages are sent to the various objects to satisfy
each scenario. As you go through this process, you discover the classes that you
need along with their responsibilities and collaborations, and you fill out the
cards as you do this. When you've moved through all the use cases, you
should have a fairly complete first cut of your design.
Before I began using CRC cards, the most
successful consulting experiences I had when coming up with an initial design
involved standing in front of a team, who hadn't built an OOP project
before, and drawing objects on a whiteboard. We talked about how the objects
should communicate with each other, and erased some of them and replaced them
with other objects. Effectively, I was managing all the “CRC cards”
on the whiteboard. The team (who knew what the project was supposed to do)
actually created the design; they “owned” the design rather than
having it given to them. All I was doing was guiding the process by asking the
right questions, trying out the assumptions, and taking the feedback from the
team to modify those assumptions. The true beauty of the process was that the
team learned how to do object-oriented design not by reviewing abstract
examples, but by working on the one design that was most interesting to them at
that moment: theirs.
Once you've come up with a set of
CRC cards, you may want to create a more formal description of your design using
UML(14). You
don't need to use UML, but it can be helpful,
especially if you want to put up a diagram on the wall for everyone to ponder,
which is a good idea. An alternative to UML is a textual description of the
objects and their interfaces, or, depending on your programming language, the
code
itself(15).
UML also provides an additional
diagramming notation for describing the dynamic model of your system. This is
helpful in situations in which the state transitions of a system or subsystem
are dominant enough that they need their own diagrams (such as in a control
system). You may also need to describe the data structures, for systems or
subsystems in which data is a dominant factor (such as a
database).
You'll know you're done with
phase 2 when you have described the objects and their interfaces. Well, most of
them - there are usually a few that slip through the cracks and
don't make themselves known until phase 3. But that's OK. All you
are concerned with is that you eventually discover all of your objects.
It's nice to discover them early in the process but OOP provides enough
structure so that it's not so bad if you discover them later. In fact, the
design of an object tends to happen in five stages, throughout the process of
program
development.

Five stages of object
design
The design life of an object is not
limited to the time when you're writing the program. Instead, the design
of an object appears over a sequence of stages. It's helpful to have this
perspective because you stop expecting perfection right away; instead, you
realize that the understanding of what an object does and what it should look
like happens over time. This view also applies to the design of various types of
programs; the pattern for a particular type of program emerges through
struggling again and again with that problem (Design Patterns are covered
in Volume 2). Objects, too, have their patterns that emerge through
understanding, use, and reuse.
1. Object
discovery.This stage occurs during the
initial analysis of a program. Objects may be discovered by looking for external
factors and boundaries, duplication of elements in the system, and the smallest
conceptual units. Some objects are obvious if you already have a set of class
libraries. Commonality between classes suggesting base classes and inheritance
may appear right away, or later in the design process.
2. Object
assembly.As you're building an
object you'll discover the need for new members that didn't appear
during discovery. The internal needs of the object may require other classes to
support it.
3. System
construction.Once again, more
requirements for an object may appear at this later stage. As you learn, you
evolve your objects. The need for communication and interconnection with other
objects in the system may change the needs of your classes or require new
classes. For example, you may discover the need for facilitator or helper
classes, such as a linked list, that contain little or no state information and
simply help other classes function.
4. System
extension.As you add new features to a
system you may discover that your previous design doesn't support easy
system extension. With this new information, you can restructure parts of the
system, possibly adding new classes or class hierarchies.
5. Object
reuse.This is the
real stress test for a class. If someone tries to reuse it in an entirely new
situation, they'll probably discover some shortcomings. As you change a
class to adapt to more new programs, the general principles of the class will
become clearer, until you have a truly reusable type. However, don't
expect most objects from a system design to be reusable - it is perfectly
acceptable for the bulk of your objects to be system-specific. Reusable types
tend to be less common, and they must solve more general problems in order to be
reusable.

Guidelines for object
development
These stages suggest some guidelines when
thinking about developing your classes:
		Let a specific problem
generate a class, then let the class grow and mature during the solution of
other
problems.
		Remember,
discovering the classes you need (and their interfaces) is the majority of the
system design. If you already had those classes, this would be an easy
project.
		Don't
force yourself to know everything at the beginning; learn as you go. This will
happen anyway.
		Start
programming; get something working so you can prove or disprove your design.
Don't fear that you'll end up with procedural-style spaghetti code
- classes partition the problem and help control anarchy and entropy. Bad
classes do not break good
classes.
		Always keep
it simple. Little clean objects with obvious utility are better than big
complicated interfaces. When decision points come up, use an Occam's Razor
approach: Consider the choices and select the one that is simplest, because
simple classes are almost always best. Start small and simple, and you can
expand the class interface when you understand it better, but as time goes on,
it's difficult to remove elements from a
class.

1-9-4 - 
Phase 3: Build the core
This is the initial conversion from the
rough design into a compiling and executing body of code that can be tested, and
especially that will prove or disprove your architecture. This is not a one-pass
process, but rather the beginning of a series of steps that will iteratively
build the system, as you'll see in phase 4.
Your goal is to find the core of your
system architecture that needs to be implemented in order to generate a running
system, no matter how incomplete that system is in this initial pass.
You're creating a framework that you can build upon with further
iterations. You're also performing the first of many system integrations
and tests, and giving the stakeholders feedback about what their system will
look like and how it is progressing. Ideally, you are also exposing some of the
critical risks. You'll probably also discover changes and improvements
that can be made to your original architecture - things you would not have
learned without implementing the system.
Part of building the system is the
reality check that you get from testing against your requirements analysis and
system specification (in whatever form they exist). Make sure that your tests
verify the requirements and use cases. When the core of the system is stable,
you're ready to move on and add more
functionality.
1-9-5 - 
Phase 4: Iterate the use cases
Once the core framework is running, each
feature set you add is a small project in itself. You add a feature set during
an iteration, a reasonably short period of
development.
How big is an iteration? Ideally, each
iteration lasts one to three weeks (this can vary based on the implementation
language). At the end of that period, you have an integrated, tested system with
more functionality than it had before. But what's particularly interesting
is the basis for the iteration: a single use case. Each use case is a package of
related functionality that you build into the system all at once, during one
iteration. Not only does this give you a better idea of what the
scope of a use case should be, but
it also gives more validation to the idea of a use case, since the concept
isn't discarded after analysis and design, but instead it is a fundamental
unit of development throughout the software-building process. 
You stop iterating when you achieve
target functionality or an external deadline arrives and the customer can be
satisfied with the current version. (Remember, software is a subscription
business.) Because the process is iterative, you have many opportunities to ship
a product instead of a single endpoint; open-source projects work exclusively in
an iterative, high-feedback environment, which is precisely what makes them
successful.
An iterative development process is
valuable for many reasons. You can reveal and resolve critical risks early, the
customers have ample opportunity to change their minds, programmer satisfaction
is higher, and the project can be steered with more precision. But an additional
important benefit is the feedback to the stakeholders, who can see by the
current state of the product exactly where everything lies. This may reduce or
eliminate the need for mind-numbing status meetings and increase the confidence
and support from the stakeholders.
1-9-6 - 
Phase 5: Evolution
This is the point in the development
cycle that has traditionally been called
“maintenance,” a
catch-all term that can mean everything from “getting it to work the way
it was really supposed to in the first place” to “adding features
that the customer forgot to mention” to the more traditional “fixing
the bugs that show up” and “adding new features as the need
arises.” So many misconceptions have been applied to the term
“maintenance” that it has taken on a slightly deceiving quality,
partly because it suggests that you've actually built a pristine program
and all you need to do is change parts, oil it, and keep it from rusting.
Perhaps there's a better term to describe what's going
on.
I'll use the term
evolution(16).
That is, “You won't get it right the first time, so give yourself
the latitude to learn and to go back and make changes.” You might need to
make a lot of changes as you learn and understand the problem more deeply. The
elegance you'll produce if you evolve until you get it right will pay off,
both in the short and the long term. Evolution is where your program goes from
good to great, and where those issues that you didn't really understand in
the first pass become clear. It's also where your classes can evolve from
single-project usage to reusable resources.
What it means to “get it
right” isn't just that the program works according to the
requirements and the use cases. It also means that the internal structure of the
code makes sense to you, and feels like it fits together well, with no awkward
syntax, oversized objects, or ungainly exposed bits of code. In addition, you
must have some sense that the program structure will survive the changes that it
will inevitably go through during its lifetime, and that those changes can be
made easily and cleanly. This is no small feat. You must not only understand
what you're building, but also how the program will evolve (what I call
the vector of
change(17)).
Fortunately, object-oriented programming languages are particularly adept at
supporting this kind of continuing modification - the boundaries created
by the objects are what tend to keep the structure from breaking down. They also
allow you to make changes - ones that would seem drastic in a procedural
program - without causing earthquakes throughout your code. In fact,
support for evolution might be the most important benefit of
OOP.
With evolution, you create something that
at least approximates what you think you're building, and then you kick
the tires, compare it to your requirements and see where it falls short. Then
you can go back and fix it by redesigning and re-implementing the portions of
the program that didn't work
right(18).
You might actually need to solve the problem, or an aspect of the problem,
several times before you hit on the right solution. (A study of
Design Patterns, described
in Volume 2, is usually helpful here.)
Evolution also occurs when you build a
system, see that it matches your requirements, and then discover it wasn't
actually what you wanted. When you see the system in operation, you find that
you really wanted to solve a different problem. If you think this kind of
evolution is going to happen, then you owe it to yourself to build your first
version as quickly as possible so you can find out if it is indeed what you
want.
Perhaps the most important thing to
remember is that by default - by definition, really - if you modify
a class then its super- and subclasses will still function. You need not fear
modification (especially if you have a built-in set of unit tests to verify the
correctness of your modifications). Modification won't necessarily break
the program, and any change in the outcome will be limited to subclasses and/or
specific collaborators of the class you
change.
1-9-7 - 
Plans pay off
Of course you wouldn't build a
house without a lot of carefully-drawn plans. If you build a deck or a dog
house, your plans won't be so elaborate but you'll probably still
start with some kind of sketches to guide you on your way. Software development
has gone to extremes. For a long time, people didn't have much structure
in their development, but then big projects began failing. In reaction, we ended
up with methodologies that had an intimidating amount of structure and detail,
primarily intended for those big projects. These methodologies were too scary to
use - it looked like you'd spend all your time writing documents and
no time programming. (This was often the case.) I hope that what I've
shown you here suggests a middle path - a sliding scale. Use an approach
that fits your needs (and your personality). No matter how minimal you choose to
make it, some kind of plan will make a big improvement in your project as
opposed to no plan at all. Remember that, by most estimates, over 50 percent of
projects fail (some estimates go up to 70 percent!).

By following a plan - preferably
one that is simple and brief - and coming up with design structure before
coding, you'll discover that things fall together far more easily than if
you dive in and start hacking, and you'll also realize a great deal of
satisfaction. It's my experience that coming up with an elegant solution
is deeply satisfying at an entirely different level; it feels closer to art than
technology. And elegance always pays off; it's not
a frivolous pursuit. Not only does it give you a program that's easier to
build and debug, but it's also easier to understand and maintain, and
that's where the financial value
lies.
1-10 - 
Extreme programming
I have studied analysis and design
techniques, on and off, since I was in graduate school. The concept of
Extreme
Programming (XP) is the most radical, and delightful, that I've seen.
You can find it chronicled in Extreme Programming Explained by Kent Beck
(Addison-Wesley 2000) and on the Web at
www.xprogramming.com.
XP is both a philosophy about programming
work and a set of guidelines to do it. Some of these guidelines are reflected in
other recent methodologies, but the two most important and distinct
contributions, in my opinion, are “write tests first” and
“pair programming.” Although he argues strongly for the whole
process, Beck points out that if you adopt only these two practices you'll
greatly improve your productivity and
reliability.
1-10-1 - 
Write tests first
Testing has traditionally been relegated
to the last part of a project, after you've “gotten everything
working, but just to be sure.” It's implicitly had a low priority,
and people who specialize in it have not been given a lot of status and have
often even been cordoned off in a basement, away from the “real
programmers.” Test teams have responded in kind, going so far as to wear
black clothing and cackling with glee whenever they broke something (to be
honest, I've had this feeling myself when breaking C++
compilers).
XP completely revolutionizes the concept
of testing by giving it equal (or even greater) priority than the code. In fact,
you write the tests before you write the code that's being tested,
and the tests stay with the code forever. The tests must be executed
successfully every time you do an integration of the project (which is often,
sometimes more than once a day).
Writing tests first has two extremely
important effects.
First, it forces a clear definition of
the interface of a class.
I've often suggested that people “imagine the perfect class to solve
a particular problem” as a tool when trying to design the system. The XP
testing strategy goes further than that - it specifies exactly what the
class must look like, to the consumer of that class, and exactly how the class
must behave. In no uncertain terms. You can write all the prose, or create all
the diagrams you want describing how a class should behave and what it looks
like, but nothing is as real as a set of tests. The former is a wish list, but
the tests are a contract that is enforced by the compiler and the running
program. It's hard to imagine a more concrete description of a class than
the tests.
While creating the tests, you are forced
to completely think out the class and will often discover needed functionality
that might be missed during the thought experiments of UML diagrams, CRC cards,
use cases, etc.
The second
important effect of writing the tests first comes from running the tests every
time you do a build of your software. This activity gives you the other half of
the testing that's performed by the compiler. If you look at the evolution
of programming languages from this perspective, you'll see that the real
improvements in the technology have actually revolved around testing. Assembly
language checked only for syntax, but C imposed some semantic restrictions, and
these prevented you from making certain types of mistakes. OOP languages impose
even more semantic restrictions, which if you think about it are actually forms
of testing. “Is this data type being used properly? Is this function being
called properly?” are the kinds of tests that are being performed by the
compiler or run-time system. We've seen the results of having these tests
built into the language: people have been able to write more complex systems,
and get them to work, with much less time and effort. I've puzzled over
why this is, but now I realize it's the tests: you do something wrong, and
the safety net of the built-in tests tells you there's a problem and
points you to where it is.
But the built-in testing afforded by the
design of the language can only go so far. At some point, you must step
in and add the rest of the tests that produce a full suite (in cooperation with
the compiler and run-time system) that verifies all of your program. And, just
like having a compiler watching over your shoulder, wouldn't you want
these tests helping you right from the beginning? That's why you write
them first, and run them automatically with every build of your system. Your
tests become an extension of the safety net provided by the
language.
One of the things that I've
discovered about the use of more and more powerful programming languages is that
I am emboldened to try more brazen experiments, because I know that the language
will keep me from wasting my time chasing bugs. The XP test scheme does the same
thing for your entire project. Because you know your tests will always catch any
problems that you introduce (and you regularly add any new tests as you think of
them), you can make big changes when you need to without worrying that
you'll throw the whole project into complete disarray. This is incredibly
powerful.
1-10-2 - 
Pair programming
Pair programming goes against the rugged
individualism that we've been indoctrinated into from the beginning,
through school (where we succeed or fail on our own, and working with our
neighbors is considered “cheating”) and media, especially Hollywood
movies in which the hero is usually fighting against mindless
conformity(19).
Programmers, too, are considered paragons of individuality - “cowboy
coders” as Larry Constantine likes to say. And yet XP, which is itself
battling against conventional thinking, says that code should be written with
two people per workstation. And that this should be done in an area with a group
of workstations, without the barriers that the facilities design people are so
fond of. In fact, Beck says that the first task of converting to XP is to arrive
with screwdrivers and Allen wrenches and take apart everything that gets in the
way.(20) (This will
require a manager who can deflect the ire of the facilities
department.)
The value of pair programming is that one
person is actually doing the coding while the other is thinking about it. The
thinker keeps the big picture in mind, not only the picture of the problem at
hand, but the guidelines of XP. If two people are working, it's less
likely that one of them will get away with saying, “I don't want to
write the tests first,” for example. And if the coder gets stuck, they can
swap places. If both of them get stuck, their musings may be overheard by
someone else in the work area who can contribute. Working in pairs keeps things
flowing and on track. Probably more important, it makes programming a lot more
social and fun.
I've begun using pair programming
during the exercise periods in some of my seminars and it seems to significantly
improve everyone's
experience.
1-11 - 
Why C++ succeeds
Part of the reason
C++ has been so successful is that the goal was not just
to turn C into an OOP language (although it started that way), but also to solve
many other problems facing developers today, especially those who have large
investments in C. Traditionally, OOP languages have suffered from the attitude
that you should abandon everything you know and start from scratch with a new
set of concepts and a new syntax, arguing that it's better in the long run
to lose all the old baggage that comes with procedural languages. This may be
true, in the long run. But in the short run, a lot of that baggage was valuable.
The most valuable elements may not be the existing code base (which, given
adequate tools, could be translated), but instead the existing mind base.
If you're a functioning C programmer and must drop everything you know
about C in order to adopt a new language, you immediately become much less
productive for many months, until your mind fits around the new paradigm.
Whereas if you can leverage off of your existing C knowledge and expand on it,
you can continue to be productive with what you already know while moving into
the world of object-oriented programming. As everyone has his or her own mental
model of programming, this move is messy enough as it is without the added
expense of starting with a new language model from square one. So the reason for
the success of C++, in a nutshell, is economic: It still costs to move to OOP,
but C++ may cost
less(21).
The goal of C++ is improved productivity.
This productivity comes in many ways, but the language is designed to aid you as
much as possible, while hindering you as little as possible with arbitrary rules
or any requirement that you use a particular set of features. C++ is designed to
be practical; C++ language design decisions were based on providing the maximum
benefits to the programmer (at least, from the world view of
C).
1-11-1 - 
A better C
You get an instant win even if you
continue to write C code because C++ has closed many holes in the C language and
provides better type checking and compile-time analysis. You're forced to
declare functions so that the compiler can check their use. The need for the
preprocessor has virtually been eliminated for value substitution and macros,
which removes a set of difficult-to-find bugs. C++ has a feature called
references that allows more convenient handling of addresses for function
arguments and return values. The handling of names is improved through a feature
called function overloading, which allows you to use the same name for
different functions. A feature called namespaces also improves the
control of names. There are numerous smaller features that improve the safety of
C.
1-11-2 - 
You're already on the learning curve
The problem with learning a new language
is productivity. No company can afford to suddenly lose a productive software
engineer because he or she is learning a new language. C++ is an extension to C,
not a complete new syntax and programming model. It allows you to continue
creating useful code, applying the features gradually as you learn and
understand them. This may be one of the most important reasons for the success
of C++.
In addition, all of your existing C code
is still viable in C++, but because the C++ compiler is pickier, you'll
often find hidden C errors when recompiling the code in
C++.
1-11-3 - 
Efficiency
Sometimes it is appropriate to trade
execution speed for programmer productivity. A financial model, for example, may
be useful for only a short period of time, so it's more important to
create the model rapidly than to execute it rapidly. However, most applications
require some degree of efficiency, so C++ always errs on the side of greater
efficiency. Because C programmers
tend to be very efficiency-conscious, this is also a way to ensure that they
won't be able to argue that the language is too fat and slow. A number of
features in C++ are intended to allow you to tune for performance when the
generated code isn't efficient enough.
Not only do you have the same low-level
control as in C (and the ability to directly write assembly language within a
C++ program), but anecdotal evidence suggests that the program speed for an
object-oriented C++ program tends to be within ±10% of a program written in
C, and often much
closer(22).
The design produced for an OOP program may actually be more efficient than the C
counterpart.
1-11-4 - 
Systems are easier to express and understand
Classes designed to fit the problem tend
to express it better. This means that when you write the code, you're
describing your solution in the terms of the problem space (“Put the
grommet in the bin”) rather than the terms of the computer, which is the
solution space (“Set the bit in the chip that means that the relay will
close”). You deal with higher-level concepts and can do much more with a
single line of code.
The other benefit of this ease of
expression is maintenance, which (if reports can be believed) takes a huge
portion of the cost over a program's lifetime. If a program is easier to
understand, then it's easier to maintain. This can also reduce the cost of
creating and maintaining the
documentation.
1-11-5 - 
Maximal leverage with libraries
The fastest way to create a program is to
use code that's already written: a library. A major goal in C++ is to make
library use easier. This is accomplished by casting libraries into new data
types (classes), so that bringing in a library means adding new types to the
language. Because the C++ compiler takes care of how the library is used -
guaranteeing proper initialization and cleanup, and ensuring that functions are
called properly - you can focus on what you want the library to do, not
how you have to do it. 
Because names can be sequestered to
portions of your program via C++ namespaces, you can use as many libraries as
you want without the kinds of name clashes you'd run into with
C.
1-11-6 - 
Source-code reuse with templates
There is a significant class of types
that require source-code modification in order to reuse them effectively. The
template feature in C++ performs the source code modification
automatically, making it an especially powerful tool for reusing library code. A
type that you design using templates will work effortlessly with many other
types. Templates are especially nice because they hide the complexity of this
kind of code reuse from the client
programmer.
1-11-7 - 
Error handling
Error handling in C is a notorious
problem, and one that is often ignored - finger-crossing is usually
involved. If you're building a large, complex program, there's
nothing worse than having an error buried somewhere with no clue as to where it
came from. C++ exception handling (introduced in this Volume, and fully
covered in Volume 2, which is downloadable from www.BruceEckel.com) is a
way to guarantee that an error is noticed and that something happens as a
result.
1-11-8 - 
Programming in the large
Many traditional languages have built-in
limitations to program size and complexity. BASIC, for
example, can be great for pulling together quick solutions for certain classes
of problems, but if the program gets more than a few pages long or ventures out
of the normal problem domain of that language, it's like trying to swim
through an ever-more viscous fluid. C, too, has these limitations. For example,
when a program gets beyond perhaps 50,000 lines of code,
name collisions start to become a
problem - effectively, you run out of function and variable names. Another
particularly bad problem is the little holes in the C language - errors
buried in a large program can be extremely difficult to find.
There's no clear line that tells
you when your language is failing you, and even if there were, you'd
ignore it. You don't say, “My BASIC program just got too big;
I'll have to rewrite it in C!” Instead, you try to shoehorn a few
more lines in to add that one new feature. So the extra costs come creeping up
on you.
C++ is designed to aid
programming in the large, that is, to erase those
creeping-complexity boundaries between a small program and a large one. You
certainly don't need to use OOP, templates, namespaces, and exception
handling when you're writing a hello-world style utility program, but
those features are there when you need them. And the compiler is aggressive
about ferreting out bug-producing errors for small and large programs
alike.
1-12 - 
Strategies for transition
If you buy into OOP, your next question
is probably, “How can I get my manager/colleagues/department/peers to
start using objects?” Think about how you - one independent
programmer - would go about learning to use a new language and a new
programming paradigm. You've done it before. First comes education and
examples; then comes a trial project to give you a feel for the basics without
doing anything too confusing. Then comes a “real world” project that
actually does something useful. Throughout your first projects you continue your
education by reading, asking questions of experts, and trading hints with
friends. This is the approach many experienced programmers suggest for the
switch from C to C++. Switching an entire company will of course introduce
certain group dynamics, but it will help at each step to remember how one person
would do it. 
1-12-1 - 
Guidelines
Here are some guidelines to consider when
making the transition to OOP and C++:

1. Training
The first step is some form of education.
Remember the company's investment in plain C code, and try not to throw
everything into disarray for six to nine months while everyone puzzles over how
multiple inheritance works. Pick a small group for indoctrination, preferably
one composed of people who are curious, work well together, and can function as
their own support network while they're learning C++.
An alternative approach that is sometimes
suggested is the education of all company levels at once, including overview
courses for strategic managers as well as design and programming courses for
project builders. This is especially good for smaller companies making
fundamental shifts in the way they do things, or at the division level of larger
companies. Because the cost is higher, however, some may choose to start with
project-level training, do a pilot project (possibly with an outside mentor),
and let the project team become the teachers for the rest of the
company.

2. Low-risk project
Try a low-risk project first and allow
for mistakes. Once you've gained some experience, you can either seed
other projects from members of this first team or use the team members as an OOP
technical support staff. This first project may not work right the first time,
so it should not be mission-critical for the company. It should be simple,
self-contained, and instructive; this means that it should involve creating
classes that will be meaningful to the other programmers in the company when
they get their turn to learn C++.

3. Model from success
Seek out examples of good object-oriented
design before starting from scratch. There's a good probability that
someone has solved your problem already, and if they haven't solved it
exactly you can probably apply what you've learned about abstraction to
modify an existing design to fit your needs. This is the general concept of
design patterns, covered in Volume
2.

4. Use existing class libraries
The primary economic motivation for
switching to OOP is the easy use of existing code in the form of class libraries
(in particular, the Standard C++ libraries, which are covered in depth in Volume
two of this book). The shortest application development cycle will result when
you don't have to write anything but main( ), creating and
using objects from off-the-shelf libraries. However, some new programmers
don't understand this, are unaware of existing class libraries, or,
through fascination with the language, desire to write classes that may already
exist. Your success with OOP and C++ will be optimized if you make an effort to
seek out and reuse other people's code early in the transition
process.

5. Don't rewrite existing code in C++
Although compiling your C code
with a C++ compiler usually produces (sometimes tremendous) benefits by
finding problems in the old code, it is not usually the
best use of your time to take existing, functional code and rewrite it in C++.
(If you must turn it into objects, you can “wrap” the C code in C++
classes.) There are incremental benefits, especially if the code is slated for
reuse. But chances are you aren't going to see the dramatic increases in
productivity that you hope for in your first few projects unless that project is
a new one. C++ and OOP shine best when taking a project from concept to
reality.
1-12-2 - 
Management obstacles
If you're a manager, your job is to
acquire resources for your team, to overcome barriers to your team's
success, and in general to try to provide the most productive and enjoyable
environment so your team is most likely to perform those miracles that are
always being asked of you. Moving to C++ falls in all three of these categories,
and it would be wonderful if it didn't cost you anything as well. Although
moving to C++ may be cheaper - depending on your
constraints(23)
- than the OOP alternatives for a team of C programmers (and probably for
programmers in other procedural languages), it isn't free, and there are
obstacles you should be aware of before trying to sell the move to C++ within
your company and embarking on the move itself.

Startup costs
The cost of moving to C++ is more than
just the acquisition of C++ compilers (the
GNU C++ compiler, one of the very
best, is free). Your medium- and long-term costs will be minimized if you invest
in training (and possibly mentoring for your first project) and also if you
identify and purchase class libraries that solve your problem rather than trying
to build those libraries yourself. These are hard-money costs that must be
factored into a realistic proposal. In addition, there are the hidden costs in
loss of productivity while learning a new language and possibly a new
programming environment. Training
and mentoring can certainly minimize these, but team members must overcome their
own struggles to understand the new technology. During this process they will
make more mistakes (this is a feature, because acknowledged mistakes are the
fastest path to learning) and be less productive. Even then, with some types of
programming problems, the right classes, and the right development environment,
it's possible to be more productive while you're learning C++ (even
considering that you're making more mistakes and writing fewer lines of
code per day) than if you'd stayed with C.

Performance issues
A common question is,
“Doesn't OOP automatically make my programs a lot bigger and
slower?” The answer is, “It depends.” Most traditional OOP
languages were designed with experimentation and rapid prototyping in mind
rather than lean-and-mean operation. Thus, they virtually guaranteed a
significant increase in size and decrease in speed. C++, however, is designed
with production programming in mind. When your focus is on rapid prototyping,
you can throw together components as fast as possible while ignoring efficiency
issues. If you're using any third party libraries, these are usually
already optimized by their vendors; in any case it's not an issue while
you're in rapid-development mode. When you have a system that you like, if
it's small and fast enough, then you're done. If not, you begin
tuning with a profiling tool, looking first for speedups that can be done with
simple applications of built-in C++ features. If that doesn't help, you
look for modifications that can be made in the underlying implementation so no
code that uses a particular class needs to be changed. Only if nothing else
solves the problem do you need to change the design. The fact that performance
is so critical in that portion of the design is an indicator that it must be
part of the primary design criteria. You have the benefit of finding this out
early using rapid development.
As mentioned earlier, the number that is
most often given for the difference in size and speed between C and C++ is
±10%, and often much closer to par. You might even get a significant
improvement in size and speed when using C++ rather than C because the design
you make for C++ could be quite different from the one you'd make for
C.
The evidence for size and speed
comparisons between C and C++ tends to be anecdotal and is likely to remain so.
Regardless of the number of people who suggest that a company try the same
project using C and C++, no company is likely to waste money that way unless
it's very big and interested in such research projects. Even then, it
seems like the money could be better spent. Almost universally, programmers who
have moved from C (or some other procedural language) to C++ (or some other OOP
language) have had the personal experience of a great acceleration in their
programming productivity, and that's the most compelling argument you can
find.

Common design errors
When starting your team into OOP and C++,
programmers will typically go through a series of common design errors. This
often happens because of too little feedback from experts during the design and
implementation of early projects, because no experts have been developed within
the company and there may be resistance to retaining consultants. It's
easy to feel that you understand OOP too early in the cycle and go off on a bad
tangent. Something that's obvious to someone experienced with the language
may be a subject of great internal debate for a novice. Much of this trauma can
be skipped by using an experienced outside expert for
training and
mentoring.
On the other hand, the fact that it is
easy to make these design errors points to C++'s main drawback: its
backward compatibility with C (of course, that's
also its main strength). To accomplish the feat of being able to compile C code,
the language had to make some compromises, which have resulted in a number of
“dark corners.” These are a reality, and comprise much of the
learning curve for the language. In this book and the subsequent volume (and in
other books; see Appendix C), I try to reveal most of the pitfalls you are
likely to encounter when working with C++. You should always be aware that there
are some holes in the safety
net.
1-13 - 
Summary
This chapter attempts to give you a feel
for the broad issues of object-oriented programming and C++, including why OOP
is different, and why C++ in particular is different, concepts of OOP
methodologies, and finally the kinds of issues you will encounter when moving
your own company to OOP and C++.
OOP and C++ may not be for everyone.
It's important to evaluate your own needs and decide whether C++ will
optimally satisfy those needs, or if you might be better off with another
programming system (including the one you're currently using). If you know
that your needs will be very specialized for the foreseeable future and if you
have specific constraints that may not be satisfied by C++, then you owe it to
yourself to investigate the
alternatives(24).
Even if you eventually choose C++ as your language, you'll at least
understand what the options were and have a clear vision of why you took that
direction.
You know what a procedural program looks
like: data definitions and function calls. To find the meaning of such a program
you have to work a little, looking through the function calls and low-level
concepts to create a model in your mind. This is the reason we need intermediate
representations when designing procedural programs - by themselves, these
programs tend to be confusing because the terms of expression are oriented more
toward the computer than to the problem you're solving.
Because C++ adds many new concepts to the
C language, your natural assumption may be that the main( ) in a C++
program will be far more complicated than for the equivalent C program. Here,
you'll be pleasantly surprised: A well-written C++ program is generally
far simpler and much easier to understand than the equivalent C program. What
you'll see are the definitions of the objects that represent concepts in
your problem space (rather than the issues of the computer representation) and
messages sent to those objects to represent the activities in that space. One of
the delights of object-oriented programming is that, with a well-designed
program, it's easy to understand the code by reading it. Usually
there's a lot less code, as well, because many of your problems will be
solved by reusing existing library
code.

2 - Making & Using Objects 
This chapter will introduce enough
C++ syntax and program construction concepts to allow you to write

and run some simple object-oriented
programs. In the subsequent chapter we will cover the basic syntax of C and C++
in detail.
By reading this chapter first,
you'll get the basic flavor of what it is like to program with objects in
C++, and you'll also discover some of the reasons for the enthusiasm
surrounding this language. This should be enough to carry you through Chapter 3,
which can be a bit exhausting since it contains most of the details of the C
language.
The user-defined data
type, or
class, is what distinguishes C++ from traditional
procedural languages. A class is a new data type that you or someone else
creates to solve a particular kind of problem. Once a class is created, anyone
can use it without knowing the specifics of how it works, or even how classes
are built. This chapter treats classes as if they are just another built-in data
type available for use in programs. 
Classes that someone else has created are
typically packaged into a library. This chapter uses
several of the class libraries that come with all C++ implementations. An
especially important standard library is iostreams, which (among other things)
allow you to read from files and the keyboard, and to write to files and the
display. You'll also see the very handy string class, and the
vector container from the Standard C++ Library. By the end of the
chapter, you'll see how easy it is to use a pre-defined library of
classes.
In order to create your first program you
must understand the tools used to build
applications.
2-1 - 
The process of language translation
All computer languages are translated
from something that tends to be easy for a human to understand (source
code)into something that is executed on a computer (machine
instructions). Traditionally, translators fall into
two classes: interpreters and
compilers.
2-1-1 - 
Interpreters
An interpreter translates source code
into activities (which may comprise groups of machine instructions) and
immediately executes those activities. BASIC, for
example, has been a popular interpreted language. Traditional BASIC interpreters
translate and execute one line at a time, and then forget that the line has been
translated. This makes them slow, since they must re-translate any repeated
code. BASIC has also been compiled, for speed. More modern interpreters, such as
those for the Python language, translate the entire
program into an intermediate language that is then executed by a much faster
interpreter(25).
Interpreters have many advantages. The
transition from writing code to executing code is almost immediate, and the
source code is always available so the interpreter can be much more specific
when an error occurs. The benefits often cited for interpreters are ease of
interaction and rapid development (but not necessarily execution) of
programs.
Interpreted languages often have severe
limitations when building large projects (Python seems to be an exception to
this). The interpreter (or a reduced version) must always be in memory to
execute the code, and even the fastest interpreter may introduce unacceptable
speed restrictions. Most interpreters require that the complete source code be
brought into the interpreter all at once. Not only does this introduce a space
limitation, it can also cause more difficult bugs if the language doesn't
provide facilities to localize the effect of different pieces of
code.
2-1-2 - 
Compilers
A compiler translates source code
directly into assembly language or machine instructions. The eventual end
product is a file or files containing machine code. This is an involved process,
and usually takes several steps. The transition from writing code to executing
code is significantly longer with a compiler.
Depending on the acumen of the compiler
writer, programs generated by a compiler tend to require much less space to run,
and they run much more quickly. Although size and speed are probably the most
often cited reasons for using a compiler, in many situations they aren't
the most important reasons. Some languages (such as C) are designed to allow
pieces of a program to be compiled independently. These pieces are eventually
combined into a final executable program by a tool called the
linker. This process is called separate
compilation.
Separate compilation has many benefits. A
program that, taken all at once, would exceed the limits of the compiler or the
compiling environment can be compiled in pieces. Programs can be built and
tested one piece at a time. Once a piece is working, it can be saved and treated
as a building block. Collections of tested and working pieces can be combined
into libraries for use by other programmers. As
each piece is created, the complexity of the other pieces is hidden. All these
features support the creation of large
programs(26).
Compiler debugging
features have improved significantly over time. Early compilers only generated
machine code, and the programmer inserted print statements to see what was going
on. This is not always effective. Modern compilers can insert information about
the source code into the executable program. This information is used by
powerful source-level debuggers to show exactly
what is happening in a program by tracing its progress through the source
code.
Some compilers tackle the
compilation-speed problem by performing in-memory
compilation. Most compilers work with files, reading and writing them in
each step of the compilation process. In-memory compilers keep the compiler
program in RAM. For small programs, this can seem as responsive as an
interpreter.

2-1-3 - 
The compilation process
To program in C and C++, you need to
understand the steps and tools in the compilation process. Some languages (C and
C++, in particular) start compilation by running a
preprocessor on the source code. The preprocessor
is a simple program that replaces patterns in the source code with other
patterns the programmer has defined (using preprocessor
directives). Preprocessor directives are used to save
typing and to increase the readability of the code. (Later in the book,
you'll learn how the design of C++ is meant to discourage much of the use
of the preprocessor, since it can cause subtle bugs.) The pre-processed code is
often written to an intermediate file.
Compilers usually do their work in two
passes. The first pass parses the pre-processed
code. The compiler breaks the source code into small units and organizes it into
a structure called a tree. In the expression
“A + B” the elements ‘A',
‘+,' and ‘B' are leaves on the parse
tree.
A global
optimizer is sometimes used between the first and
second passes to produce smaller, faster code.
In the second pass, the code
generator walks through the parse tree and generates
either assembly language code or machine code for the nodes of the tree. If the
code generator creates assembly code, the assembler must then be run. The end
result in both cases is an object module (a file that
typically has an extension of .o or .obj). A peephole
optimizer is sometimes used in the second pass to
look for pieces of code containing redundant assembly-language
statements.
The use of the word
“object” to describe chunks of machine code
is an unfortunate artifact. The word came into use before object-oriented
programming was in general use. “Object” is used in the same sense
as “goal” when discussing compilation, while in object-oriented
programming it means “a thing with boundaries.”
The linker
combines a list of object modules into an executable program that can be loaded
and run by the operating system. When a function in one object module makes a
reference to a function or variable in another object module, the linker
resolves these references; it makes sure that all the external functions and
data you claimed existed during compilation do exist. The
linker also adds a special object module to perform start-up
activities.
The linker can search through special
files called libraries in order to resolve all its references. A
library contains a collection of object modules in a
single file. A library is created and maintained by a program called a
librarian.

Static type checking
The compiler performs type
checking during the first pass. Type checking tests
for the proper use of arguments in functions and prevents many kinds of
programming errors. Since type checking occurs during compilation instead of
when the program is running, it is called static type checking.

Some object-oriented languages (notably
Java) perform some type checking at runtime (dynamic
type checking). If combined with static type checking,
dynamic type checking is more powerful than static type
checking alone. However, it also adds overhead to program
execution.
C++ uses static type checking because the
language cannot assume any particular runtime support for bad operations. Static
type checking notifies the programmer about misuses of types during compilation,
and thus maximizes execution speed. As you learn C++, you will see that most of
the language design decisions favor the same kind of high-speed,
production-oriented programming the C language is famous for.
You can disable static type checking in
C++. You can also do your own dynamic type checking - you just need to
write the code.

2-2 - 
Tools for separate compilation
Separate compilation is particularly
important when building large projects. In C and C++, a
program can be created in small, manageable, independently tested pieces. The
most fundamental tool for breaking a program up into pieces is the ability to
create named subroutines or subprograms. In C and C++, a subprogram is called a
function, and functions are the pieces of code
that can be placed in different files, enabling separate compilation. Put
another way, the function is the atomic unit of code, since you cannot have part
of a function in one file and another part in a different file; the entire
function must be placed in a single file (although files can and do contain more
than one function).
When you call a function, you typically
pass it some arguments, which are values you'd like the function to
work with during its execution. When the function is finished, you typically get
back a return value, a
value that the function hands back to you as a result. It's also possible
to write functions that take no arguments and return no
values.
To create a program with multiple files,
functions in one file must access functions and data in other files. When
compiling a file, the C or C++ compiler must know about the functions and data
in the other files, in particular their names and proper usage. The compiler
ensures that functions and data are used correctly. This process of
“telling the compiler” the names of external functions and data and
what they should look like is called declaration.
Once you declare a function or variable, the compiler knows how to check to make
sure it is used
properly.
2-2-1 - 
Declarations vs. definitions
It's important to understand the
difference between declarations and
definitions because these terms will be used
precisely throughout the book. Essentially all C and C++ programs require
declarations. Before you can write your first program, you need to understand
the proper way to write a declaration.
A declaration introduces a name
- an identifier - to the compiler. It tells the compiler “This
function or this variable exists somewhere, and here is what it should look
like.” A definition, on the other hand, says: “Make this
variable here” or “Make this function here.” It allocates
storage for the name. This meaning works whether you're talking about a
variable or a function; in either case, at the point of definition the compiler
allocates storage. For a variable, the compiler determines how big that variable
is and causes space to be generated in memory to hold the data for that
variable. For a function, the compiler generates code, which ends up occupying
storage in memory. 
You can declare a variable or a function
in many different places, but there must be only one definition in C and C++
(this is sometimes called the ODR: one-definition
rule). When the linker is uniting all the object modules, it will usually
complain if it finds more than one definition for the same function or
variable.
A definition can also be a declaration.
If the compiler hasn't seen the name x before and you define int
x;, the compiler sees the name as a declaration and allocates storage for it
all at once.

Function declaration
syntax
A function declaration in C and C++ gives
the function name, the argument types passed to the function, and the return
value of the function. For example, here is a declaration for a function called
func1( ) that takes two integer arguments (integers are denoted in
C/C++ with the keyword int) and returns an integer:
int func1(int,int);

The first keyword you see is the return
value all by itself: int. The arguments are enclosed in parentheses after
the function name in the order they are used. The semicolon indicates the end of
a statement; in this case, it tells the compiler “that's all -
there is no function definition here!” 
C and C++ declarations attempt to mimic
the form of the item's use. For example, if a is another integer
the above function might be used this way:
a = func1(2,3);

Since func1( ) returns an
integer, the C or C++ compiler will check the use of func1( ) to
make sure that a can accept the return value and that the arguments are
appropriate.
Arguments in
function declarations may have names. The compiler ignores the names but they
can be helpful as mnemonic devices for the user. For example, we can declare
func1( ) in a different fashion that has the same
meaning:
int func1(int length, int width);


A gotcha
There is a significant difference between
C and C++ for functions with empty argument lists. In C, the
declaration:
int func2();

means “a function with any number
and type of argument.” This prevents type-checking,
so in C++ it means “a function with no arguments.”

Function definitions
Function definitions look like function
declarations except that they have bodies. A body is a
collection of statements enclosed in braces. Braces denote the beginning and
ending of a block of code. To give func1( ) a definition that is an
empty body (a body containing no code), write:
int func1(int length, int width) { }

Notice that in the function definition,
the braces replace the semicolon. Since braces surround a statement or group of
statements, you don't need a semicolon. Notice also that the arguments in
the function definition must have names if you want to use the arguments in the
function body (since they are never used here, they are
optional).

Variable declaration syntax
The meaning attributed to the phrase
“variable declaration” has historically been confusing and
contradictory, and it's important that you understand the correct
definition so you can read code properly. A variable declaration tells the
compiler what a variable looks like. It says, “I know you haven't
seen this name before, but I promise it exists someplace, and it's a
variable of X type.” 
In a function declaration, you give a
type (the return value), the function name, the argument list, and a semicolon.
That's enough for the compiler to figure out that it's a declaration
and what the function should look like. By inference, a variable declaration
might be a type followed by a name. For example:
int a;

could declare the variable a as an
integer, using the logic above. Here's the conflict: there is enough
information in the code above for the compiler to create space for an integer
called a, and that's what happens. To resolve this dilemma, a
keyword was necessary for C and C++ to say “This is only a declaration;
it's defined elsewhere.” The keyword is
extern. It can mean the
definition is external to the file, or that the definition occurs later
in the file.
Declaring a variable without defining it
means using the extern keyword before a description of the variable, like
this:
extern int a;

extern can also apply to function
declarations. For func1( ), it looks like this:
extern int func1(int length, int width);

This statement is equivalent to the
previous func1( ) declarations. Since there is no function body, the
compiler must treat it as a function declaration rather than a function
definition. The extern keyword is thus superfluous and optional for
function declarations. It is probably unfortunate that the designers of C did
not require the use of extern for function declarations; it would have
been more consistent and less confusing (but would have required more typing,
which probably explains the decision).
Here are some more examples of
declarations:
//: C02:Declare.cpp
// Declaration & definition examples
extern int i; // Declaration without definition
extern float f(float); // Function declaration
 
float b;  // Declaration & definition
float f(float a) {  // Definition
  return a + 1.0;
}
 
int i; // Definition
int h(int x) { // Declaration & definition
  return x + 1;
}
 
int main() {
  b = 1.0;
  i = 2;
  f(b);
  h(i);
} ///:~

In the function declarations, the
argument identifiers are optional. In the definitions, they are required (the
identifiers are required only in C, not C++).

Including headers 
Most libraries contain significant
numbers of functions and variables. To save work and ensure consistency when
making the external declarations for these items, C and C++ use a device called
the header file. A header file is a file
containing the external declarations for a library; it conventionally has a file
name extension of ‘h', such as headerfile.h. (You may also
see some older code using different extensions, such as .hxx or
.hpp, but this is becoming rare.)
The programmer who creates the library
provides the header file. To declare the functions and external variables in the
library, the user simply includes the header file. To include a header file, use
the #include
preprocessor
directive. This tells the preprocessor to open the named header file and insert
its contents where the #include statement appears. A #include may
name a file in two ways: in angle brackets (< >) or in double
quotes. 
File names in angle brackets, such
as:
#include <header>

cause the preprocessor to search for the
file in a way that is particular to your implementation, but typically
there's some kind of “include search path” that you specify in
your environment or on the compiler command line. The mechanism for setting the
search path varies between machines, operating systems, and C++ implementations,
and may require some investigation on your part.
File names in double quotes, such
as:
#include "local.h"

tell the preprocessor to search for the
file in (according to the specification) an “implementation-defined
way.” What this typically means is to search for the file relative to the
current directory. If the file is not found, then the include directive is
reprocessed as if it had angle brackets instead of quotes. 
To include the iostream header file, you
write:
#include <iostream>

The preprocessor will find the iostream
header file (often in a subdirectory called “include”) and insert
it. 

Standard C++ include
format
As C++ evolved, different compiler
vendors chose different extensions for file names. In addition, various
operating systems have different restrictions on file names, in particular on
name length. These issues caused source code portability problems. To smooth
over these rough edges, the standard uses a format that allows file names longer
than the notorious eight characters and eliminates the extension. For example,
instead of  the old style of including iostream.h, which looks like
this:
#include <iostream.h>

you can now write:
#include <iostream>

The translator can implement the include
statements in a way that suits the needs of that particular compiler and
operating system, if necessary truncating the name and adding an extension. Of
course, you can also copy the headers given you by your compiler vendor to ones
without extensions if you want to use this style before a vendor has provided
support for it.
The libraries that have been inherited
from C are still available with the traditional ‘.h'
extension. However, you can also use them with the more modern C++ include style
by prepending a “c” before the name. Thus: 
#include <stdio.h>
#include <stdlib.h>

become:
#include <cstdio>
#include <cstdlib>

And so on, for all the Standard C
headers. This provides a nice distinction to the reader indicating when
you're using C versus C++ libraries.
The effect of the new include format is
not identical to the old: using the .h gives you the older, non-template
version, and omitting the .h gives you the new templatized version.
You'll usually have problems if you try to intermix the two forms in a
single
program.
2-2-2 - 
Linking 
The linker collects object modules (which
often use file name extensions like .o or .obj), generated by the
compiler, into an executable program the operating system can load and run. It
is the last phase of the compilation process.
Linker characteristics vary from system
to system. In general, you just tell the linker the names of the object modules
and libraries you want linked together, and the name of the executable, and it
goes to work. Some systems require you to invoke the linker yourself. With most
C++ packages you invoke the linker through the C++ compiler. In many situations,
the linker is invoked for you invisibly.
Some older linkers
won't search object files
and libraries more than once, and they search through the list you give them
from left to right. This means that the order of object files and libraries can
be important. If you have a mysterious problem that doesn't show up until
link time, one possibility is the order in which the files are given to the
linker.
2-2-3 - 
Using libraries 
Now that you know the basic terminology,
you can understand how to use a library. To use a library:
		Include the
library's header
file.
		Use the
functions and variables in the
library.
		Link the
library into the executable
program.

These steps also
apply when the object modules aren't combined into a library. Including a
header file and linking the object modules are the basic steps for separate
compilation in both C and C++.

How the linker searches a library 
When you make an external reference to a
function or variable in C or C++, the linker, upon encountering this reference,
can do one of two things. If it has not already encountered the definition for
the function or variable, it adds the identifier to its list of
“unresolved
references.” If the linker
has already encountered the definition, the reference is
resolved.
If the linker cannot find the definition
in the list of object modules, it searches the libraries.
Libraries have some sort of indexing so the linker doesn't need to look
through all the object modules in the library - it just looks in the
index. When the linker finds a definition in a library, the entire object
module, not just the function definition, is linked into the executable program.
Note that the whole library isn't linked, just the object module in the
library that contains the definition you want (otherwise programs would be
unnecessarily large). If you want to minimize executable program size, you might
consider putting a single function in each source code file when you build your
own libraries. This requires more
editing(27),
but it can be helpful to the user.
Because the linker searches files in the
order you give them, you can pre-empt the use of a library function
by inserting a file with your own function, using the
same function name, into the list before the library name appears. Since the
linker will resolve any references to this function by using your function
before it searches the library, your function is used instead of the library
function. Note that this can also be a bug, and the kind of thing C++ namespaces
prevent.

Secret additions
When a C or C++ executable program is
created, certain items are secretly linked in. One of these is the startup
module, which contains initialization routines that must
be run any time a C or C++ program begins to execute. These routines set up the
stack and initialize certain variables in the program.
The linker always searches the standard
library for the compiled versions of any
“standard” functions called in the program. Because the standard
library is always searched, you can use anything in that library by simply
including the appropriate header file in your program; you don't have to
tell it to search the standard library. The iostream functions, for example, are
in the Standard C++ library. To use them, you just include the
<iostream> header file.
If you are using an add-on library, you
must explicitly add the library name to the list of files handed to the
linker.

Using plain C libraries 
Just because you are writing code in C++,
you are not prevented from using C library functions. In fact, the entire C
library is included by default into Standard C++. There has been a tremendous
amount of work done for you in these functions, so they can save you a lot of
time.
This book will use Standard C++ (and thus
also Standard C) library functions when convenient, but only standard
library functions will be used, to ensure the portability of programs. In the
few cases in which library functions must be used that are not in the C++
standard, all attempts will be made to use POSIX-compliant functions. POSIX is a
standard based on a Unix standardization effort that includes functions that go
beyond the scope of the C++ library. You can generally expect to find POSIX
functions on Unix (in particular, Linux) platforms, and often under DOS/Windows.
For example, if you're using multithreading you are better off using the
POSIX thread library because your code will then be easier to understand, port
and maintain (and the POSIX thread library will usually just use the underlying
thread facilities of the operating system, if these are
provided).
2-3 - 
Your first C++ program
You now know almost enough of the basics
to create and compile a program. The program will use the Standard C++ iostream
classes. These read from and write to files and “standard” input and
output (which normally comes from and goes to the console, but may be redirected
to files or devices). In this simple program, a stream object will be used to
print a message on the
screen.
2-3-1 - 
Using the iostreams class 
To declare the functions and external
data in the iostreams class, include the header file with the
statement
#include <iostream>

The first program uses the concept of
standard output, which means
“a general-purpose place to send output.” You will see other
examples using standard output in different ways, but here it will just go to
the console. The iostream package automatically defines a variable (an object)
called cout that accepts all data bound for
standard output.
To send data to standard output, you use
the operator <<. C programmers know this operator as the
“bitwise left shift,” which will be described in the next chapter.
Suffice it to say that a bitwise left shift has nothing to do with output.
However, C++ allows operators to be overloaded. When you overload an
operator, you give it a new
meaning when that operator is used with an object of a particular type. With
iostream objects, the operator << means “send to.” For
example:
cout << "howdy!";

sends the string “howdy!” to
the object called cout (which is short for
“console output”).
That's enough operator overloading
to get you started. Chapter 12 covers operator overloading in
detail.
2-3-2 - 
Namespaces
As mentioned in Chapter 1, one of the
problems encountered in the C language is that you “run out of
names” for functions and identifiers when your programs reach a certain
size. Of course, you don't really run out of names; it does, however,
become harder to think of new ones after awhile. More importantly, when a
program reaches a certain size it's typically broken up into pieces, each
of which is built and maintained by a different person or group. Since C
effectively has a single arena where all the identifier and function names live,
this means that all the developers must be careful not to accidentally use the
same names in situations where they can conflict. This rapidly becomes tedious,
time-wasting, and, ultimately, expensive.
Standard C++ has a mechanism to prevent
this collision: the namespace keyword. Each set of C++ definitions in a
library or program is “wrapped” in a namespace, and if some other
definition has an identical name, but is in a different namespace, then there is
no collision.
Namespaces are a convenient and helpful
tool, but their presence means that you must be aware of them before you can
write any programs. If you simply include a header file and use some functions
or objects from that header, you'll probably get strange-sounding errors
when you try to compile the program, to the effect that the compiler cannot find
any of the declarations for the items that you just included in the header file!
After you see this message a few times you'll become familiar with its
meaning (which is “You included the header file but all the declarations
are within a namespace and you didn't tell the compiler that you wanted to
use the declarations in that namespace”).
There's a keyword that allows you
to say “I want to use the declarations and/or definitions in this
namespace.” This keyword, appropriately enough, is
using. All of the Standard
C++ libraries are wrapped in a single namespace, which is
std (for
“standard”). As this book uses the standard libraries almost
exclusively, you'll see the following
using directive in almost
every program:
using namespace std;

This means that you want to expose all
the elements from the namespace called std. After this statement, you
don't have to worry that your particular library component is inside a
namespace, since the using directive makes that namespace available
throughout the file where the using directive was
written.
Exposing all the elements from a
namespace after someone has gone to the trouble to hide them may seem a bit
counterproductive, and in fact you should be careful about thoughtlessly doing
this (as you'll learn later in the book). However, the using
directive exposes only those names for the current file, so it is not quite as
drastic as it first sounds. (But think twice about doing it in a header file
- that is reckless.)
There's a relationship between
namespaces and the way header files are included. Before the modern header file
inclusion was standardized (without the trailing ‘.h', as in
<iostream>), the typical way to include a header file was with the
‘.h', such as <iostream.h>. At that time,
namespaces were not part of the language either. So to provide backward
compatibility with existing code, if you say 
#include <iostream.h>

it means
#include <iostream>
using namespace std;

However, in this book the standard
include format will be used (without the ‘.h') and so the
using directive must be explicit.
For now, that's all you need to
know about namespaces, but in Chapter 10 the subject is covered much more
thoroughly.
2-3-3 - 
Fundamentals of program structure

A C or C++ program is a collection of
variables, function definitions, and function calls. When the program starts, it
executes initialization code and calls a special function,
“main( ).” You put the primary
code for the program here.
As mentioned earlier, a function
definition consists of a return type (which must be specified in C++), a
function name, an argument list in parentheses, and the function code contained
in braces. Here is a sample function definition:
int function() {
  // Function code here (this is a comment)
}

The function above has an empty argument
list and a body that contains only a comment. 
There can be many sets of braces within a
function definition, but there must always be at least one set surrounding the
function body. Since main( ) is a function, it must follow these
rules. In C++, main( ) always has return type of
int.
C and C++ are free form languages. With
few exceptions, the compiler ignores newlines and white space, so it must have
some way to determine the end of a statement. Statements are delimited by
semicolons.
C comments start with /* and end
with */. They can include newlines. C++ uses C-style comments and has an
additional type of comment: //. The // starts a comment that
terminates with a newline. It is more convenient than /* */ for one-line
comments, and is used extensively in this
book.
2-3-4 - 
"Hello, world!"
And now, finally, the first
program:
//: C02:Hello.cpp
// Saying Hello with C++
#include <iostream> // Stream declarations
using namespace std;
 
int main() {
  cout << "Hello, World! I am "
       << 8 << " Today!" << endl;
} ///:~

The cout object is handed a series
of arguments via the ‘<<' operators. It prints out
these arguments in left-to-right order. The special iostream function
endl outputs the line and a newline. With iostreams, you can string
together a series of arguments like this, which makes the class easy to use.

In C, text inside double quotes is
traditionally called a “string.” However, the
Standard C++ library has a powerful class called string for manipulating
text, and so I shall use the more precise term character array for text
inside double quotes.
The compiler creates storage for
character arrays and stores the ASCII equivalent for each character in this
storage. The compiler automatically terminates this array of characters with an
extra piece of storage containing the value 0 to indicate the end of the
character array. 
Inside a character array, you can insert
special characters by using escape sequences.
These consist of a backslash (\) followed by a special code. For example
\n means newline. Your compiler manual or local C
guide gives a complete set of escape sequences; others include \t
(tab), \\ (backslash), and
\b (backspace).
Notice that the statement can continue
over multiple lines, and that the entire statement terminates with a
semicolon
Character array arguments and constant
numbers are mixed together in the above cout statement. Because the
operator << is overloaded with a variety of
meanings when used with cout, you can send cout a variety of
different arguments and it will “figure out what to do with the
message.”
Throughout this book you'll notice
that the first line of each file will be a comment that starts with the
characters that start a comment (typically //), followed by a colon, and
the last line of the listing will end with a comment followed by
‘/:~'. This is a technique I use to allow easy extraction of
information from code files (the program to do this can be found in volume two
of this book, at www.BruceEckel.com). The first line also has the name
and location of the file, so it can be referred to in text and in other files,
and so you can easily locate it in the source code for this book (which is
downloadable from
www.BruceEckel.com).
2-3-5 - 
Running the compiler 
After downloading and unpacking the
book's source code, find the program in the subdirectory CO2.
Invoke the compiler with Hello.cpp as the argument. For simple, one-file
programs like this one, most compilers will take you all the way through the
process. For example, to use the GNU C++ compiler (which is freely available on
the Internet), you write:
g++ Hello.cpp

Other compilers will have a similar
syntax; consult your compiler's documentation for
details.
2-4 - 
More about iostreams 
So far you have seen only the most
rudimentary aspect of the iostreams class. The output formatting available with
iostreams also includes features such as number formatting in decimal, octal,
and hexadecimal. Here's another example of the use of
iostreams:
//: C02:Stream2.cpp
// More streams features
#include <iostream>
using namespace std;
 
int main() {
  // Specifying formats with manipulators:
  cout << "a number in decimal: "
       << dec << 15 << endl;
  cout << "in octal: " << oct << 15 << endl;
  cout << "in hex: " << hex << 15 << endl;
  cout << "a floating-point number: "
       << 3.14159 << endl;
  cout << "non-printing char (escape): "
       << char(27) << endl;
} ///:~

This example shows the iostreams class
printing numbers in decimal, octal, and hexadecimal using iostream
manipulators (which don't print anything,
but change the state of the output stream). The formatting of floating-point
numbers is determined automatically by the compiler. In addition, any character
can be sent to a stream object using a cast to a
char (a char is a
data type that holds single characters). This cast looks like a function
call: char( ), along with the character's ASCII value. In the
program above, the char(27) sends an “escape” to
cout.
2-4-1 - 
Character array concatenation
An important feature of the C
preprocessor is character array
concatenation. This feature is used in some of the
examples in this book. If two quoted character arrays are adjacent, and no
punctuation is between them, the compiler will paste the character arrays
together into a single character array. This is particularly useful when code
listings have width restrictions:
//: C02:Concat.cpp
// Character array Concatenation
#include <iostream>
using namespace std;
 
int main() {
  cout << "This is far too long to put on a "
    "single line but it can be broken up with "
    "no ill effects\nas long as there is no "
    "punctuation separating adjacent character "
    "arrays.\n";
} ///:~

At first, the code above can look like an
error because there's no familiar semicolon at the end of each line.
Remember that C and C++ are free-form languages, and although you'll
usually see a semicolon at the end of each line, the actual requirement is for a
semicolon at the end of each statement, and it's possible for a
statement to continue over several
lines.
2-4-2 - 
Reading input
The iostreams classes provide the ability
to read input. The object used for
standard input is
cin (for “console input”). cin
normally expects input from the console, but this input can be redirected from
other sources. An example of redirection is shown later in this
chapter.
The iostreams operator used with
cin is >>. This operator waits for the same kind of input as
its argument. For example, if you give it an integer argument, it waits for an
integer from the console. Here's an example:
//: C02:Numconv.cpp
// Converts decimal to octal and hex
#include <iostream>
using namespace std;
 
int main() {
  int number;
  cout << "Enter a decimal number: ";
  cin >> number;
  cout << "value in octal = 0" 
       << oct << number << endl;
  cout << "value in hex = 0x" 
       << hex << number << endl;
} ///:~

This program converts a number typed in
by the user into octal and hexadecimal
representations.
2-4-3 - 
Calling other programs
While the typical way to use a program
that reads from standard input and writes to standard output is within a Unix
shell script or DOS batch file, any program can be called from inside a C or C++
program using the Standard C system( )
function, which is declared in the header file
<cstdlib>:
//: C02:CallHello.cpp
// Call another program
#include <cstdlib> // Declare "system()"
using namespace std;
 
int main() {
  system("Hello");
} ///:~

To use the system( )
function, you give it a character array that you would normally type at the
operating system command prompt. This can also include command-line arguments,
and the character array can be one that you fabricate at run time (instead of
just using a static character array as shown above). The command executes and
control returns to the program.
This program shows you how easy it is to
use plain C library functions in C++; just include the header file and call the
function. This upward compatibility from C to C++ is a
big advantage if you are learning the language starting from a background in
C.
2-5 - 
Introducing strings
While a character array can be fairly
useful, it is quite limited. It's simply a group of characters in memory,
but if you want to do anything with it you must manage all the little details.
For example, the size of a quoted character array is fixed at compile time. If
you have a character array and you want to add some more characters to it,
you'll need to understand quite a lot (including dynamic memory
management, character array copying, and concatenation) before you can get your
wish. This is exactly the kind of thing we'd like to have an object do for
us.
The Standard C++
string class is designed to take care of (and
hide) all the low-level manipulations of character arrays that were previously
required of the C programmer. These manipulations have been a constant source of
time-wasting and errors since the inception of the C language. So, although an
entire chapter is devoted to the string class in Volume 2 of this book,
the string is so important and it makes life so much easier that it will
be introduced here and used in much of the early part of the
book.
To use strings you include the C++
header file <string>. The string class is in the namespace
std so a using directive is necessary. Because of operator
overloading, the syntax for using strings is quite
intuitive:
//: C02:HelloStrings.cpp
// The basics of the Standard C++ string class
#include <string>
#include <iostream>
using namespace std;
 
int main() {
  string s1, s2; // Empty strings
  string s3 = "Hello, World."; // Initialized
  string s4("I am"); // Also initialized
  s2 = "Today"; // Assigning to a string
  s1 = s3 + " " + s4; // Combining strings
  s1 += " 8 "; // Appending to a string
  cout << s1 + s2 + "!" << endl;
} ///:~

The first two strings, s1
and s2, start out empty, while s3 and s4 show two
equivalent ways to initialize string objects from character arrays (you
can just as easily initialize string objects from other string
objects).
You can assign to any string
object using ‘='. This replaces the previous contents of the
string with whatever is on the right-hand side, and you don't have to
worry about what happens to the previous contents - that's handled
automatically for you. To combine strings you simply use the
‘+' operator, which also allows you to combine character
arrays with strings. If you want to append either a string or a
character array to another string, you can use the operator
‘+='. Finally, note that iostreams
already know what to do with strings, so you can just send a
string (or an expression that produces a string, which happens
with s1 + s2 + "!") directly to cout in order to print
it.
2-6 - 
Reading and writing
files
In C, the process of opening and
manipulating files requires a lot of language background to prepare you for the
complexity of the operations. However, the C++ iostream library provides a
simple way to manipulate files, and so this functionality can be introduced much
earlier than it would be in C.
To open files for reading and writing,
you must include <fstream>. Although this
will automatically include <iostream>, it's generally prudent
to explicitly include <iostream> if you're planning to use
cin, cout, etc.
To open a file for reading, you create an
ifstream object, which then behaves like
cin. To open a file for writing, you create an
ofstream object, which then behaves like
cout. Once you've opened the file, you can read from it or write to
it just as you would with any other iostream object. It's that simple
(which is, of course, the whole point).
One of the most useful functions in the
iostream library is
getline( ), which
allows you to read one line (terminated by a newline) into a string
object(28). The
first argument is the ifstream object you're reading from and the
second argument is the string object. When the function call is finished,
the string object will contain the line.
Here's a simple example, which
copies the contents of one file into another:
//: C02:Scopy.cpp
// Copy one file to another, a line at a time
#include <string>
#include <fstream>
using namespace std;
 
int main() {
  ifstream in("Scopy.cpp"); // Open for reading
  ofstream out("Scopy2.cpp"); // Open for writing
  string s;
  while(getline(in, s)) // Discards newline char
    out << s << "\n"; // ... must add it back
} ///:~

To open the files, you just hand the
ifstream and ofstream objects the file names you want to create,
as seen above.
There is a new concept introduced here,
which is the
while
loop. Although this will be explained in detail in the next chapter, the basic
idea is that the expression in parentheses following the while controls
the execution of the subsequent statement (which can also be multiple
statements, wrapped inside curly braces). As long as the expression in
parentheses (in this case, getline(in, s)) produces a “true”
result, then the statement controlled by the while will continue to
execute. It turns out that getline( ) will return a value that can
be interpreted as “true” if another line has been read successfully,
and “false” upon reaching the end of the input. Thus, the above
while loop reads every line in the input file and sends each line to the
output file.
getline( ) reads in the
characters of each line until it discovers a newline (the termination character
can be changed, but that won't be an issue until the iostreams chapter in
Volume 2). However, it discards the newline and doesn't store it in the
resulting string object. Thus, if we want the copied file to look just
like the source file, we must add the newline back in, as
shown.
Another interesting example is to copy
the entire file into a single string
object:
//: C02:FillString.cpp
// Read an entire file into a single string
#include <string>
#include <iostream>
#include <fstream>
using namespace std;
 
int main() {
  ifstream in("FillString.cpp");
  string s, line;
  while(getline(in, line))
    s += line + "\n";
  cout << s;
} ///:~

Because of the dynamic nature of
strings, you don't have to worry about how much storage to allocate
for a string; you can just keep adding things and the string will
keep expanding to hold whatever you put into it.
One of the nice things about putting an
entire file into a string is that the string class has many
functions for searching and manipulation that would then allow you to modify the
file as a single string. However, this has its limitations. For one thing, it is
often convenient to treat a file as a collection of lines instead of just a big
blob of text. For example, if you want to add line numbering it's much
easier if you have each line as a separate string object. To accomplish
this, we'll need another
approach.
2-7 - 
Introducing vector
With strings, we can fill up a
string object without knowing how much storage we're going to need.
The problem with reading lines from a file into individual string objects
is that you don't know up front how many strings you're going
to need - you only know after you've read the entire file. To solve
this problem, we need some sort of holder that will automatically expand to
contain as many string objects as we care to put into
it.
In fact, why limit ourselves to holding
string objects? It turns out that this kind of problem - not
knowing how many of something you have while you're writing a program
- happens a lot. And this “container” object sounds like it
would be more useful if it would hold any kind of object at all!
Fortunately, the Standard C++ Library has a ready-made solution: the standard
container classes. The container classes are one of the real powerhouses of
Standard C++.
There is often a bit of confusion between
the containers and algorithms in the Standard C++ Library, and the entity known
as the STL. The
Standard Template Library was the
name Alex Stepanov (who was working at Hewlett-Packard at the time) used when he
presented his library to the C++ Standards Committee at the meeting in San
Diego, California in Spring 1994. The name stuck, especially after HP decided to
make it available for public downloads. Meanwhile, the committee integrated it
into the Standard C++ Library, making a large number of changes. STL's
development continues at
Silicon
Graphics (SGI; see http://www.sgi.com/Technology/STL). The SGI STL
diverges from the Standard C++ Library on many subtle points. So although it's a
popular misconception, the C++ Standard does not “include” the STL.
It can be a bit confusing since the containers and algorithms in the Standard
C++ Library have the same root (and usually the same names) as the SGI STL. In
this book, I will say “The Standard C++ Library” or “The
Standard Library containers,” or something similar and will avoid the term
“STL.”
Even though the implementation of the
Standard C++ Library containers and algorithms uses some advanced concepts and
the full coverage takes two large chapters in Volume 2 of this book, this
library can also be potent without knowing a lot about it. It's so useful
that the most basic of the standard containers, the vector, is introduced
in this early chapter and used throughout the book. You'll find that you
can do a tremendous amount just by using the basics of vector and not
worrying about the underlying implementation (again, an important goal of OOP).
Since you'll learn much more about this and the other containers when you
reach the Standard Library chapters in Volume 2, it seems forgivable if the
programs that use vector in the early portion of the book aren't
exactly what an experienced C++ programmer would do. You'll find that in
most cases, the usage shown here is adequate.
The vector class is a
template, which means that it can be efficiently
applied to different types. That is, we can create a vector of
shapes, a vector of cats, a vector of
strings, etc. Basically, with a template you can create a “class of
anything.” To tell the compiler what it is that the class will work with
(in this case, what the vector will hold), you put the name of the
desired type in “angle brackets,” which means ‘<' and
‘>'. So a vector of string would be denoted
vector<string>. When you do this, you end up with a customized
vector that will hold only string objects, and you'll get an error
message from the compiler if you try to put anything else into
it.
Since vector expresses the concept
of a “container,” there must be a way to put things into the
container and get things back out of the container. To
add a brand-new element on the end of a vector, you use the member
function push_back( ).
(Remember that, since it's a member function, you use a
‘.' to call it for a particular object.) The reason the name
of this member function might seem a bit verbose -
push_back( ) instead of something simpler like “put”
- is because there are other containers and other member functions for
putting new elements into containers. For example, there is an
insert( ) member
function to put something in the middle of a container. vector supports
this but its use is more complicated and we won't need to explore it until
Volume 2 of the book. There's also a
push_front( ) (not part of vector) to
put things at the beginning. There are many more member functions in
vector and many more containers in the Standard C++ Library, but
you'll be surprised at how much you can do just knowing about a few simple
features.
So you can put new elements into a
vector with push_back( ), but how do you get these elements
back out again? This solution is more clever and elegant - operator
overloading is used to make the vector look like an array. The
array (which will be described more fully in the next chapter) is a data type
that is available in virtually every programming language so you should already
be somewhat familiar with it. Arrays are
aggregates, which mean they consist of a number of
elements clumped together. The distinguishing characteristic of an array is that
these elements are the same size and are arranged to be one right after the
other. Most importantly, these elements can be selected by
“indexing,” which means you can say “I want element number
n” and that element will be produced, usually quickly. Although there are
exceptions in programming languages, the indexing is normally achieved using
square brackets, so if you have an array a and you want to produce
element five, you say a[4] (note that
indexing always starts at
zero).
This very compact and powerful indexing
notation is incorporated into the vector using operator overloading, just
like ‘<<' and ‘>>' were
incorporated into iostreams. Again, you don't need to know how the
overloading was implemented - that's saved for a later chapter
- but it's helpful if you're aware that there's some
magic going on under the covers in order to make the [ ] work with
vector.
With that in mind, you can now see a
program that uses vector. To use a vector, you include the header
file <vector>:
//: C02:Fillvector.cpp
// Copy an entire file into a vector of string
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
using namespace std;
 
int main() {
  vector<string> v;
  ifstream in("Fillvector.cpp");
  string line;
  while(getline(in, line))
    v.push_back(line); // Add the line to the end
  // Add line numbers:
  for(int i = 0; i < v.size(); i++)
    cout << i << ": " << v[i] << endl;
} ///:~

Much of this program is similar to the
previous one; a file is opened and lines are read into string objects one
at a time. However, these string objects are pushed onto the back of the
vector v. Once the while loop completes, the entire file is
resident in memory, inside v.
The next statement in the program is
called a
for
loop. It is similar to a while loop except that it adds some extra
control. After the for, there is a “control
expression” inside of parentheses, just like the while loop.
However, this control expression is in three parts: a part which initializes,
one that tests to see if we should exit the loop, and one that changes
something, typically to step through a sequence of items. This program shows the
for loop in the way you'll see it most commonly used: the
initialization part int i = 0 creates an integer
i to use as a loop counter and gives it an initial value of zero. The
testing portion says that to stay in the loop, i should be less than the
number of elements in the vector v. (This is produced using the member
function size( ), which I just sort of slipped in here, but you must
admit it has a fairly obvious meaning.) The final portion uses a shorthand for C
and C++, the
“auto-increment”
operator, to add one to the value of i. Effectively, i++ says
“get the value of i, add one to it, and put the result back into
i. Thus, the total effect of the for loop is to take a variable
i and march it through the values from zero to one less than the size of
the vector. For each value of i, the cout statement is
executed and this builds a line that consists of the value of i
(magically converted to a character array by cout), a colon and a space,
the line from the file, and a newline provided by endl. When you compile
and run it you'll see the effect is to add line numbers to the
file.
Because of the way that the
‘>>'
operator works with iostreams, you can easily modify the program above so that
it breaks up the input into
whitespace-separated words instead of lines:
//: C02:GetWords.cpp
// Break a file into whitespace-separated words
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
using namespace std;
 
int main() {
  vector<string> words;
  ifstream in("GetWords.cpp");
  string word;
  while(in >> word)
    words.push_back(word); 
  for(int i = 0; i < words.size(); i++)
    cout << words[i] << endl;
} ///:~

The expression
while(in >> word)

is what gets the input one
“word” at a time, and when this expression evaluates to
“false” it means the end of the file has been reached. Of course,
delimiting words by whitespace is quite crude, but it makes for a simple
example. Later in the book you'll see more sophisticated examples that let
you break up input just about any way you'd like.
To demonstrate how easy it is to use a
vector with any type, here's an example that creates a
vector<int>:
//: C02:Intvector.cpp
// Creating a vector that holds integers
#include <iostream>
#include <vector>
using namespace std;
 
int main() {
  vector<int> v;
  for(int i = 0; i < 10; i++)
    v.push_back(i);
  for(int i = 0; i < v.size(); i++)
    cout << v[i] << ", ";
  cout << endl;
  for(int i = 0; i < v.size(); i++)
    v[i] = v[i] * 10; // Assignment  
  for(int i = 0; i < v.size(); i++)
    cout << v[i] << ", ";
  cout << endl;
} ///:~

To create a vector that holds a
different type, you just put that type in as the template argument (the argument
in angle brackets). Templates and well-designed template libraries are intended
to be exactly this easy to use.
This example goes on to demonstrate
another essential feature of vector. In the expression
v[i] = v[i] * 10;

you can see that the vector is not
limited to only putting things in and getting things out. You also have the
ability to assign (and thus to change) to any element of a
vector, also through the use of the
square-brackets indexing operator. This means that vector is a
general-purpose, flexible “scratchpad” for working with collections
of objects, and we will definitely make use of it in coming
chapters.
2-8 - 
Summary
The intent of this chapter is to show you
how easy object-oriented programming can be - if someone else has
gone to the work of defining the objects for you. In that case, you include a
header file, create the objects, and send messages to them. If the types you are
using are powerful and well-designed, then you won't have to do much work
and your resulting program will also be powerful.
In the process of showing the ease of OOP
when using library classes, this chapter also introduced some of the most basic
and useful types in the Standard C++ library: the family of iostreams (in
particular, those that read from and write to the console and files), the
string class, and the vector template. You've seen how
straightforward it is to use these and can now probably imagine many things you
can accomplish with them, but there's actually a lot more that
they're capable
of(29). Even though
we'll only be using a limited subset of the functionality of these tools
in the early part of the book, they nonetheless provide a large step up from the
primitiveness of learning a low-level language like C. and while learning the
low-level aspects of C is educational, it's also time consuming. In the
end, you'll be much more productive if you've got objects to manage
the low-level issues. After all, the whole point of OOP is to hide the
details so you can “paint with a bigger brush.”
However, as high-level as OOP tries to
be, there are some fundamental aspects of  C that you can't avoid knowing,
and these will be covered in the next
chapter.
2-9 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
http://www.BruceEckel.com
		Modify Hello.cpp so
that it prints out your name and age (or shoe size, or your dog's age, if
that makes you feel better). Compile and run the
program.
		Using
Stream2.cpp and Numconv.cpp as guidelines, create a program that
asks for the radius of a circle and prints the area of that circle. You can just
use the ‘*' operator to square the radius. Do not try to
print out the value as octal or hex (these only work with integral
types).
		Create a
program that opens a file and counts the whitespace-separated words in that
file.
		Create a
program that counts the occurrence of a particular word in a file (use the
string class' operator ‘==' to find the
word).
		Change
Fillvector.cpp so that it prints the lines (backwards) from last to
first.
		Change
Fillvector.cpp so that it concatenates all the elements in the
vector into a single string before printing it out, but don't try
to add line
numbering.
		Display a
file a line at a time, waiting for the user to press the “Enter” key
after each
line.
		Create a
vector<float> and put 25 floating-point numbers into it using a
for loop. Display the
vector.
		Create
three vector<float> objects and fill the first two as in the
previous exercise. Write a for loop that adds each corresponding element
in the first two vectors and puts the result in the corresponding element
of the third vector. Display all three
vectors.
		Create
a vector<float> and put 25 numbers into it as in the previous
exercises. Now square each number and put the result back into the same location
in the vector. Display the vector before and after the
multiplication.


3 - The C in C++
Since C++ is based on C, you must
be familiar with the syntax of C in order to program in C++, just as you

must be reasonably fluent in algebra in
order to tackle calculus.
If you've never seen
C before, this chapter will give
you a decent background in the style of C used in C++. If you are familiar with
the style of C described in the first edition of Kernighan & Ritchie (often
called K&R C), you will find some new and different
features in C++ as well as in Standard C. If you are familiar with Standard C,
you should skim through this chapter looking for features that are particular to
C++. Note that there are some fundamental C++ features introduced here, which
are basic ideas that are akin to the features in C or often modifications to the
way that C does things. The more sophisticated C++ features will not be
introduced until later chapters.
This chapter is a fairly fast coverage of
C constructs and introduction to some basic C++ constructs, with the
understanding that you've had some experience programming in another
language. A more gentle introduction to C is found in the
CD ROM packaged in the back of this book, titled
Thinking in C: Foundations for Java & C++ by Chuck Allison (published
by MindView, Inc., and also available at www.MindView.net). This is a seminar on
a CD ROM with the goal of taking you carefully through the fundamentals of the C
language. It focuses on the knowledge necessary for you to be able to move on to
the C++ or Java languages rather than trying to make you an expert in all the
dark corners of C (one of the reasons for using a higher-level language like C++
or Java is precisely so we can avoid many of these dark corners). It also
contains exercises and guided solutions. Keep in mind that because this chapter
goes beyond the Thinking in C CD, the CD is not a replacement for this
chapter, but should be used instead as a preparation for this chapter and for
the
book.
3-1 - 
Creating functions
In old (pre-Standard) C, you could call a
function with any number or type of arguments and the compiler wouldn't
complain. Everything seemed fine until you ran the program. You got mysterious
results (or worse, the program crashed) with no hints as to why. The lack of
help with argument passing and the enigmatic bugs that resulted is probably one
reason why C was dubbed a “high-level assembly
language.” Pre-Standard C programmers just adapted
to it.
Standard C and C++ use a feature called
function prototyping.With function prototyping, you must use a description of the types of
arguments when declaring and defining a function. This description is the
“prototype.” When the function is called, the compiler uses the
prototype to ensure that the proper arguments are passed in and that the return
value is treated correctly. If the programmer makes a mistake when calling the
function, the compiler catches the mistake.
Essentially, you learned about function
prototyping (without naming it as such) in the previous chapter, since the form
of function declaration in C++ requires proper prototyping. In a function
prototype, the argument list contains the types of arguments that must be passed
to the function and (optionally for the declaration) identifiers for the
arguments. The order and type of the arguments must match in the declaration,
definition, and function call. Here's an example of a function prototype
in a declaration:
int translate(float x, float y, float z);

You do not use the same form when
declaring variables in function prototypes as you do in ordinary variable
definitions. That is, you cannot say: float x, y, z. You must indicate
the type of each argument. In a function declaration, the following form
is also acceptable:
int translate(float, float, float);

Since the compiler doesn't do
anything but check for types when the function is called, the identifiers are
only included for clarity when someone is reading the code.
In the function definition, names are
required because the arguments are referenced inside the
function:
int translate(float x, float y, float z) {
  x = y = z;
  // ...
}

It turns out this rule applies only to C.
In C++, an argument may be unnamed
in the argument list of the
function definition. Since it is unnamed, you cannot use it in the function
body, of course. Unnamed arguments are allowed to give the programmer a way to
“reserve space in the argument list.” Whoever uses the function must
still call the function with the proper arguments. However, the person creating
the function can then use the argument in the future without forcing
modification of code that calls the function. This option of ignoring an
argument in the list is also possible if you leave the name in, but you will get
an annoying warning message about the value being unused every time you compile
the function. The warning is eliminated if you remove the name.
C and C++ have two other ways to declare
an argument list. If you have an
empty
argument list, you can declare it as func( ) in C++, which tells the
compiler there are exactly zero arguments. You should be aware that this only
means an empty argument list in C++. In C it means “an indeterminate
number of arguments (which is a “hole” in C since it disables type
checking in that case). In both C and C++, the declaration func(void);
means an empty argument list. The
void keyword means
“nothing” in this case (it can also mean “no type” in
the case of pointers, as you'll see later in this
chapter).
The other option for argument lists
occurs when you don't know how many arguments or what type of arguments
you will have; this is called a variable argument
list.
This “uncertain argument list” is represented by ellipses
(...). Defining a function with a variable
argument list is significantly more complicated than defining a regular
function. You can use a variable argument list for a function that has a fixed
set of arguments if (for some reason) you want to disable the error checks of
function prototyping. Because of this, you should restrict your use of variable
argument lists to C and avoid them in C++ (in which, as you'll learn,
there are much better alternatives). Handling variable argument lists is
described in the library section of your local C
guide.
3-1-1 - 
Function return values
A C++ function prototype must specify the
return value type of the function (in C, if you leave off the return value type
it defaults to int). The return type specification precedes the function
name. To specify that no value is returned, use the
void keyword. This will
generate an error if you try to return a value from the function. Here are some
complete function prototypes:
int f1(void); // Returns an int, takes no arguments
int f2(); // Like f1() in C++ but not in Standard C!
float f3(float, int, char, double); // Returns a float
void f4(void); // Takes no arguments, returns nothing

To return a value from a function, you
use the
return
statement. return exits the function back to the point right after the
function call. If return has an argument, that argument becomes the
return value of the function. If a function says that it will return a
particular type, then each return statement must return that type. You
can have more than one return statement in a function
definition:
//: C03:Return.cpp
// Use of "return"
#include <iostream>
using namespace std;
 
char cfunc(int i) {
  if(i == 0)
    return 'a';
  if(i == 1)
    return 'g';
  if(i == 5)
    return 'z';
  return 'c';
}
 
int main() {
  cout << "type an integer: ";
  int val;
  cin >> val;
  cout << cfunc(val) << endl;
} ///:~

In cfunc( ), the first
if that evaluates to true exits the function via the return
statement. Notice that a function declaration is not necessary because the
function definition appears before it is used in main( ), so the
compiler knows about it from that function
definition.
3-1-2 - 
Using the C function library
All the functions in your local C
function library are available while you are programming in C++. You should look
hard at the function library before defining your own function -
there's a good chance that someone has already solved your problem for
you, and probably given it a lot more thought and debugging.
A word of caution, though: many compilers
include a lot of extra functions that make life even easier and are tempting to
use, but are not part of the Standard C library. If you are certain you will
never want to move the application to another platform (and who is certain of
that?), go ahead -use those functions and make your life easier. If you
want your application to be portable, you should restrict yourself to Standard
library functions. If you must perform platform-specific activities, try to
isolate that code in one spot so it can be changed easily when porting to
another platform. In C++, platform-specific activities are often encapsulated in
a class, which is the ideal solution.
The formula for using a library function
is as follows: first, find the function in your programming reference (many
programming references will index the function by category as well as
alphabetically). The description of the function should include a section that
demonstrates the syntax of the code. The top of this section usually has at
least one #include line, showing you the header file containing the
function prototype. Duplicate this #include line in your file so the
function is properly
declared.
Now you can call the function in the same way it appears in the syntax section.
If you make a mistake, the compiler will discover it by comparing your function
call to the function prototype in the header and tell you about your error. The
linker searches the Standard library by default, so that's all you need to
do: include the header file and call the
function.
3-1-3 - 
Creating your own libraries with the librarian 
You can collect your own functions
together into a library. Most programming packages come with a librarian that
manages groups of object modules. Each librarian has its own commands, but the
general idea is this: if you want to create a library, make a header file
containing the function prototypes for all the functions in your library. Put
this header file somewhere in the preprocessor's search path, either in
the local directory (so it can be found by #include "header") or in the
include directory (so it can be found by #include <header>). Now
take all the object modules and hand them to the librarian along with a name for
the finished library (most librarians require a common extension, such as
.lib or .a). Place the finished library where the other libraries
reside so the linker can find it. When you use your library, you will have to
add something to the command line so the linker knows to
search the library for the functions you call. You must find all the details in
your local manual, since they vary from system to
system.
3-2 - 
Controlling execution 
This section covers the execution control
statements in C++. You must be familiar with these statements before you can
read and write C or C++ code.
C++ uses all of C's execution
control statements. These include if-else, while, do-while,
for, and a selection statement called switch. C++ also allows the
infamous goto, which will be avoided in this
book.
3-2-1 - 
True and false
All conditional statements use the truth
or falsehood of a conditional expression to determine the execution path. An
example of a conditional expression is A == B. This uses the conditional
operator == to see if the variable A is equivalent to the variable
B. The expression produces a Boolean true
or false (these are keywords only in C++; in C an expression is
“true” if it evaluates to a nonzero value). Other conditional
operators are >, <, >=, etc. Conditional
statements are covered more fully later in this chapter.

3-2-2 - 
if-else
The if-else statement can exist in
two forms: with or without the else. The two forms are:
if(expression)
    statement

or
if(expression)
    statement
else
    statement

The “expression” evaluates to
true or false. The “statement” means either a simple
statement terminated by a semicolon or a compound statement, which is a group of
simple statements enclosed in braces. Any time the word “statement”
is used, it always implies that the statement is simple or compound. Note that
this statement can also be another if, so they can be strung
together.
//: C03:Ifthen.cpp
// Demonstration of if and if-else conditionals
#include <iostream>
using namespace std;
 
int main() {
  int i;
  cout << "type a number and 'Enter'" << endl;
  cin >> i;
  if(i > 5)
    cout << "It's greater than 5" << endl;
  else
    if(i < 5)
      cout << "It's less than 5 " << endl;
    else
      cout << "It's equal to 5 " << endl;
 
  cout << "type a number and 'Enter'" << endl;
  cin >> i;
  if(i < 10)
    if(i > 5)  // "if" is just another statement
      cout << "5 < i < 10" << endl;
    else
      cout << "i <= 5" << endl;
  else // Matches "if(i < 10)"
    cout << "i >= 10" << endl;
} ///:~

It is conventional to indent the body of
a control flow statement so the reader may easily determine where it begins and
ends(30).
3-2-3 - 
while
while, do-while, and
for control looping. A statement repeats until the controlling expression
evaluates to false. The form of a while loop is
while(expression)
    statement

The expression is evaluated once at the
beginning of the loop and again before each further iteration of the
statement.
This example stays in the body of the
while loop until you type the secret number or press
control-C.
//: C03:Guess.cpp
// Guess a number (demonstrates "while")
#include <iostream>
using namespace std;
 
int main() {
  int secret = 15;
  int guess = 0;
  // "!=" is the "not-equal" conditional:
  while(guess != secret) { // Compound statement
    cout << "guess the number: ";
    cin >> guess;
  }
  cout << "You guessed it!" << endl;
} ///:~

The while'sconditional expression is not restricted to a simple test as in the example
above; it can be as complicated as you like as long as it produces a true
or false result. You will even see code where the loop has no body, just
a bare semicolon:
while(/* Do a lot here */)
 ;

In these cases, the programmer has
written the conditional expression not only to perform the test but also to do
the
work.
3-2-4 - 
do-while
The form of do-while
is
do
    statement
while(expression);

The do-while is different from the
while because the statement always executes at least once, even if the
expression evaluates to false the first time. In a regular while, if the
conditional is false the first time the statement never
executes.
If a do-while is used in
Guess.cpp, the variable guess does not need an initial dummy
value, since it is initialized by the cin statement before it is
tested:
//: C03:Guess2.cpp
// The guess program using do-while
#include <iostream>
using namespace std;
 
int main() {
  int secret = 15;
  int guess; // No initialization needed here
  do {
    cout << "guess the number: ";
    cin >> guess; // Initialization happens
  }   while(guess != secret);
  cout << "You got it!" << endl;
} ///:~

For some reason, most programmers tend to
avoid do-while and just work with
while.
3-2-5 - 
for
A for loop performs initialization
before the first iteration. Then it performs conditional testing and, at the end
of each iteration, some form of “stepping.” The form of the
for loop is:
for(initialization; conditional; step)
 statement

Any of the expressions
initialization,
conditional, or step
may be empty. The initialization code executes once at the very
beginning. The conditional is tested before each iteration (if it
evaluates to false at the beginning, the statement never executes). At the end
of each loop, the step executes.
for loops are usually used for
“counting” tasks:
//: C03:Charlist.cpp
// Display all the ASCII characters
// Demonstrates "for"
#include <iostream>
using namespace std;
 
int main() {
  for(int i = 0; i < 128; i = i + 1)
    if (i != 26)  // ANSI Terminal Clear screen
      cout << " value: " << i 
           << " character: " 
           << char(i) // Type conversion
           << endl;
} ///:~

You may notice that the variable i
is defined at the point where it is used, instead of at the beginning of the
block denoted by the open curly brace ‘{'. This is in
contrast to traditional procedural languages (including C), which require that
all variables be defined at the beginning of the block. This will be discussed
later in this
chapter.
3-2-6 - 
The break and continue keywords

Inside the body of any of the looping
constructs while, do-while, or for,you can control
the flow of the loop using break and
continue. break quits the loop without
executing the rest of the statements in the loop. continue stops the
execution of the current iteration and goes back to the beginning of the loop to
begin a new iteration.
As an example of break and
continue, this program is a very simple menu system:
//: C03:Menu.cpp
// Simple menu program demonstrating
// the use of "break" and "continue"
#include <iostream>
using namespace std;
 
int main() {
  char c; // To hold response
  while(true) {
    cout << "MAIN MENU:" << endl;
    cout << "l: left, r: right, q: quit -> ";
    cin >> c;
    if(c == 'q')
      break; // Out of "while(1)"
    if(c == 'l') {
      cout << "LEFT MENU:" << endl;
      cout << "select a or b: ";
      cin >> c;
      if(c == 'a') {
        cout << "you chose 'a'" << endl;
        continue; // Back to main menu
      }
      if(c == 'b') {
        cout << "you chose 'b'" << endl;
        continue; // Back to main menu
      }
      else {
        cout << "you didn't choose a or b!"
             << endl;
        continue; // Back to main menu
      }
    }
    if(c == 'r') {
      cout << "RIGHT MENU:" << endl;
      cout << "select c or d: ";
      cin >> c;
      if(c == 'c') {
        cout << "you chose 'c'" << endl;
        continue; // Back to main menu
      }
      if(c == 'd') {
        cout << "you chose 'd'" << endl;
        continue; // Back to main menu
      }
      else {
        cout << "you didn't choose c or d!" 
             << endl;
        continue; // Back to main menu
      }
    }
    cout << "you must type l or r or q!" << endl;
  }
  cout << "quitting menu..." << endl;
} ///:~

If the user selects ‘q' in
the main menu, the break keyword is used to quit, otherwise the program
just continues to execute indefinitely. After each of the sub-menu selections,
the continue keyword is used to pop back up to the beginning of the while
loop.
The while(true) statement is the
equivalent of saying “do this loop forever.” The break
statement allows you to break out of this infinite while loop when the user
types a ‘q.'

3-2-7 - 
switch
A switch statement selects from
among pieces of code based on the value of an integral expression. Its form
is:
switch(selector) {
    case integral-value1 : statement; break;
    case integral-value2 : statement; break;
    case integral-value3 : statement; break;
    case integral-value4 : statement; break;
    case integral-value5 : statement; break;
    (...)
    default: statement;
}

Selector is an expression that
produces an integral value. The switch compares the result of
selector to each integral value. If it finds a match, the
corresponding statement (simple or compound) executes. If no match occurs, the
default statement
executes.
You will notice in the definition above
that each case ends with a
break, which causes execution to jump to the end of the switch
body (the closing brace that completes the switch). This is the
conventional way to build a switch statement, but the break is
optional. If it is missing, your case “drops through” to the
one after it. That is, the code for the following case statements execute
until a break is encountered. Although you don't usually want this
kind of behavior, it can be useful to an experienced
programmer.
The switch statement is a clean
way to implement multi-way
selection (i.e., selecting from among a number of different execution paths),
but it requires a selector that evaluates to an integral value at compile-time.
If you want to use, for example, a string object as a selector, it
won't work in a switch statement. For a string selector, you
must instead use a series of if statements and compare the string
inside the conditional.
The menu example shown above provides a
particularly nice example of a switch:
//: C03:Menu2.cpp
// A menu using a switch statement
#include <iostream>
using namespace std;
 
int main() {
  bool quit = false;  // Flag for quitting
  while(quit == false) {
    cout << "Select a, b, c or q to quit: ";
    char response;
    cin >> response;
    switch(response) {
      case 'a' : cout << "you chose 'a'" << endl;
                 break;
      case 'b' : cout << "you chose 'b'" << endl;
                 break;
      case 'c' : cout << "you chose 'c'" << endl;
                 break;
      case 'q' : cout << "quitting menu" << endl;
                 quit = true;
                 break;
      default  : cout << "Please use a,b,c or q!"
                 << endl;
    }
  }
} ///:~

The quit flag is a
bool, short for
“Boolean,” which is a type you'll find only in C++. It can
have only the keyword values true or false.Selecting
‘q' sets the quit flag to true. The next time the
selector is evaluated, quit == false returns false so the body of
the while does not
execute.
3-2-8 - 
Using and misusing goto
The
goto keyword is supported
in C++, since it exists in C. Using goto is often dismissed as poor
programming style, and most of the time it is. Anytime you use goto, look
at your code and see if there's another way to do it. On rare occasions,
you may discover goto can solve a problem that can't be solved
otherwise, but still, consider it carefully. Here's an example that might
make a plausible candidate:
//: C03:gotoKeyword.cpp
// The infamous goto is supported in C++
#include <iostream>
using namespace std;
 
int main() {
  long val = 0;
  for(int i = 1; i < 1000; i++) {
    for(int j = 1; j < 100; j += 10) {
      val = i * j;
      if(val > 47000)
        goto bottom; 
        // Break would only go to the outer 'for'
    }
  }
  bottom: // A label
  cout << val << endl;
} ///:~

The alternative would be to set a Boolean
that is tested in the outer for loop, and then do a break from the
inner for loop. However, if you have several levels of for or
while this could get awkward.
3-2-9 - 
Recursion
Recursion is an interesting and sometimes
useful programming technique whereby you call the function that you're in.
Of course, if this is all you do, you'll keep calling the function
you're in until you run out of memory, so there must be some way to
“bottom out” the recursive call. In the following example, this
“bottoming out” is accomplished by simply saying that the recursion
will go only until the cat exceeds
‘Z':(31)
//: C03:CatsInHats.cpp
// Simple demonstration of recursion
#include <iostream>
using namespace std;
 
void removeHat(char cat) {
  for(char c = 'A'; c < cat; c++)
    cout << "  ";
  if(cat <= 'Z') {
    cout << "cat " << cat << endl;
    removeHat(cat + 1); // Recursive call
  } else
    cout << "VOOM!!!" << endl;
}
 
int main() {
  removeHat('A');
} ///:~

In removeHat( ), you can see
that as long as cat is less than ‘Z',
removeHat( ) will be called from withinremoveHat( ), thus effecting the recursion. Each time
removeHat( ) is called, its argument is one greater than the current
cat so the argument keeps increasing.
Recursion is often used when evaluating
some sort of arbitrarily complex problem, since you aren't restricted to a
particular “size” for the solution - the function can just
keep recursing until it's reached the end of the problem.
3-3 - 
Introduction to
operators
You can think of operators as a special
type of function (you'll learn that C++ operator overloading treats
operators precisely that way). An operator takes one or more arguments and
produces a new value. The arguments are in a different form than ordinary
function calls, but the effect is the same.
From your previous programming
experience, you should be reasonably comfortable with the operators that have
been used so far. The concepts of addition (+), subtraction and unary
minus (-), multiplication (*), division (/), and
assignment(=) all have essentially the same meaning in any programming
language. The full set of operators is enumerated later in this
chapter.
3-3-1 - 
Precedence
Operator precedence defines the order in
which an expression evaluates when several different operators are present. C
and C++ have specific rules to determine the order of evaluation. The easiest to
remember is that multiplication and division happen before addition and
subtraction. After that, if an expression isn't transparent to you it
probably won't be for anyone reading the code, so you should use
parentheses to make the order of evaluation explicit. For
example:
A = X + Y - 2/2 + Z;

has a very different meaning from the
same statement with a particular grouping of parentheses:
A = X + (Y - 2)/(2 + Z);

(Try evaluating the result with X = 1, Y
= 2, and Z =
3.)
3-3-2 - 
Auto increment and decrement
C, and therefore C++, is full of
shortcuts. Shortcuts can make code much easier to type, and sometimes much
harder to read. Perhaps the C language designers thought it would be easier to
understand a tricky piece of code if your eyes didn't have to scan as
large an area of print.
One of the nicer shortcuts is the
auto-increment and auto-decrement
operators. You often use these to change loop variables, which control the
number of times a loop executes.
The
auto-decrement operator is ‘--' and means “decrease by
one unit.” The auto-increment operator is ‘++' and
means “increase by one unit.” If A is an int, for
example, the expression ++A is equivalent to (A = A + 1).
Auto-increment and auto-decrement operators produce the value of the variable as
a result. If the operator appears before the variable, (i.e., ++A), the
operation is first performed and the resulting value is produced. If the
operator appears after the variable (i.e. A++), the current value is
produced, and then the operation is performed. For example:
//: C03:AutoIncrement.cpp
// Shows use of auto-increment
// and auto-decrement operators.
#include <iostream>
using namespace std;
 
int main() {
  int i = 0;
  int j = 0;
  cout << ++i << endl; // Pre-increment
  cout << j++ << endl; // Post-increment
  cout << --i << endl; // Pre-decrement
  cout << j-- << endl; // Post decrement
} ///:~

If you've been wondering about the
name “C++,” now you understand. It implies
“one step beyond
C.”
3-4 - 
Introduction to data types
Data types define the way you use
storage (memory) in the programs you write. By specifying a data type, you tell
the compiler how to create a particular piece of storage, and also how to
manipulate that storage.
Data types can be
built-in or abstract. A built-in
data type is one that the compiler intrinsically
understands, one that is wired directly into the compiler. The types of built-in
data are almost identical in C and C++. In contrast, a user-defined data
type is one that you or another
programmer create as a class. These are commonly referred to as abstract data
types. The compiler knows how to handle built-in types
when it starts up; it “learns” how to handle abstract data types by
reading header files containing class declarations
(you'll learn about this in later
chapters).
3-4-1 - 
Basic built-in
types
The Standard C specification for built-in
types (which C++ inherits) doesn't say how many bits each of the built-in
types must contain. Instead, it stipulates the minimum and maximum values that
the built-in type must be able to hold. When a machine is based on binary, this
maximum value can be directly translated into a minimum number of bits necessary
to hold that value. However, if a machine uses, for example, binary-coded
decimal (BCD) to represent numbers, then the amount of space in the machine
required to hold the maximum numbers for each data type will be different. The
minimum and maximum values that can be stored in the various data types are
defined in the system header files limits.h and
float.h (in C++ you will generally #include
<climits> and <cfloat> instead).
C and C++ have four basic built-in data
types, described here for binary-based machines. A
char is for character
storage and uses a minimum of 8 bits (one byte) of storage, although it may be
larger. An int stores an
integral number and uses a minimum of two bytes of storage. The
float and
double types store floating-point
numbers, usually in IEEE floating-point
format. float is for single-precision floating
point and double is for double-precision floating
point.
As mentioned previously, you can define
variables anywhere in a scope, and you can define and initialize
them at the same time.
Here's how to define variables using the four basic data
types:
//: C03:Basic.cpp
// Defining the four basic data
// types in C and C++
 
int main() {
  // Definition without initialization:
  char protein;
  int carbohydrates;
  float fiber;
  double fat;
  // Simultaneous definition & initialization:
  char pizza = 'A', pop = 'Z';
  int dongdings = 100, twinkles = 150, 
    heehos = 200;
  float chocolate = 3.14159;
  // Exponential notation:
  double fudge_ripple = 6e-4; 
} ///:~

The first part of the program defines
variables of the four basic data types without initializing them. If you
don't initialize a variable, the Standard says that its contents are
undefined (usually, this means they contain garbage). The second part of the
program defines and initializes variables at the same time (it's always
best, if possible, to provide an initialization value at the point of
definition). Notice the use of exponential notation in
the constant 6e-4, meaning “6 times 10 to the minus fourth
power.”
3-4-2 - 
bool, true, & false
Before bool became part of
Standard C++, everyone tended to use different techniques in order to produce
Boolean-like behavior.
These
produced portability problems and could introduce subtle
errors.
The Standard C++ bool type can
have two states expressed by the built-in constants true (which converts
to an integral one) and false (which converts to an integral zero). All
three names are keywords. In addition, some language elements have been
adapted:
	Element	Usage with bool
	&&   ||  
!	Take bool arguments and produce
bool results.
	<   >   <=  >=  ==  
!=	Produce bool
results.
	if, for,
while, do	Conditional expressions convert to
bool values.
	? :	First operand converts to bool
value.


Because there's a lot of existing
code that uses an int to represent a flag, the compiler will implicitly
convert from an int to a bool (nonzero values will produce true
while zero values produce false).Ideally, the compiler will
give you a warning as a suggestion to correct the situation.
An idiom that falls under “poor
programming style” is the use of ++ to set a flag to true. This is
still allowed, but deprecated, which means that at
some time in the future it will be made illegal. The problem is that
you're making an implicit type conversion from bool to int,
incrementing the value (perhaps beyond the range of the normal bool
values of zero and one), and then implicitly converting it back
again.
Pointers (which will be introduced later
in this chapter) will also be automatically converted to bool when
necessary.
3-4-3 - 
Specifiers
Specifiers modify the meanings of the
basic built-in types and expand them to a much larger set. There are four
specifiers: long,
short,
signed, and
unsigned.
long and short modify the
maximum and minimum values that a data type will hold. A plain int must
be at least the size of a short. The size hierarchy for integral types
is: short int, int, long int. All the sizes
could conceivably be the same, as long as they satisfy the minimum/maximum value
requirements. On a machine with a 64-bit word, for instance, all the data types
might be 64 bits.
The size hierarchy for floating point
numbers is: float,
double, and
long double.
“long float” is not a legal type. There are
no short floating-point numbers.
The signed and unsigned
specifiers tell the compiler how to use the sign bit with integral types and
characters (floating-point numbers always contain a sign). An unsigned
number does not keep track of the sign and thus has an extra bit available, so
it can store positive numbers twice as large as the positive numbers that can be
stored in a signed number. signed is the default and is only
necessary with char;
char may or may not default to signed. By specifying
signed char, you
force the sign bit to be used. 
The following example shows the size of
the data types in bytes by using the
sizeof operator, introduced
later in this chapter:
//: C03:Specify.cpp
// Demonstrates the use of specifiers
#include <iostream>
using namespace std;
 
int main() {
  char c;
  unsigned char cu;
  int i;
  unsigned int iu;
  short int is;
  short iis; // Same as short int
  unsigned short int isu;
  unsigned short iisu;
  long int il;
  long iil;  // Same as long int
  unsigned long int ilu;
  unsigned long iilu;
  float f;
  double d;
  long double ld;
  cout 
    << "\n char= " << sizeof(c)
    << "\n unsigned char = " << sizeof(cu)
    << "\n int = " << sizeof(i)
    << "\n unsigned int = " << sizeof(iu)
    << "\n short = " << sizeof(is)
    << "\n unsigned short = " << sizeof(isu)
    << "\n long = " << sizeof(il) 
    << "\n unsigned long = " << sizeof(ilu)
    << "\n float = " << sizeof(f)
    << "\n double = " << sizeof(d)
    << "\n long double = " << sizeof(ld) 
    << endl;
} ///:~

Be aware that the results you get by
running this program will probably be different from one machine/operating
system/compiler to the next, since (as mentioned previously) the only thing that
must be consistent is that each different type hold the minimum and maximum
values specified in the Standard.
When you are modifying an int with
short or long, the keyword int is optional, as shown
above.
3-4-4 - 
Introduction to pointers
Whenever you run a program, it is first
loaded (typically from disk) into the computer's memory. Thus, all
elements of your program are located somewhere in memory.
Memory is typically laid out as a sequential series of
memory locations; we usually refer to these locations as eight-bit
bytes but actually the size of each space depends
on the architecture of the particular machine and is usually called that
machine's word size.
Each space can be uniquely distinguished from all other spaces by its
address. For the purposes of this discussion,
we'll just say that all machines use bytes that have sequential addresses
starting at zero and going up to however much memory you have in your
computer.
Since your program lives in memory while
it's being run, every element of your program has an address. Suppose we
start with a simple program:
//: C03:YourPets1.cpp
#include <iostream>
using namespace std;
 
int dog, cat, bird, fish;
 
void f(int pet) {
  cout << "pet id number: " << pet << endl;
}
 
int main() {
  int i, j, k;
} ///:~

Each of the elements in this program has
a location in storage when the program is running. Even the function occupies
storage. As you'll see, it turns out that what an element is and the way
you define it usually determines the area of memory where that element is
placed.
There is an operator in C and C++ that
will tell you the address of an element. This is the
 
‘&' operator. All you do is precede the identifier name
with ‘&' and it will produce the address of that
identifier. YourPets1.cpp can be modified to print out the addresses of
all its elements, like this:
//: C03:YourPets2.cpp
#include <iostream>
using namespace std;
 
int dog, cat, bird, fish;
 
void f(int pet) {
  cout << "pet id number: " << pet << endl;
}
 
int main() {
  int i, j, k;
  cout << "f(): " << (long)&f << endl;
  cout << "dog: " << (long)&dog << endl;
  cout << "cat: " << (long)&cat << endl;
  cout << "bird: " << (long)&bird << endl;
  cout << "fish: " << (long)&fish << endl;
  cout << "i: " << (long)&i << endl;
  cout << "j: " << (long)&j << endl;
  cout << "k: " << (long)&k << endl;
} ///:~

The (long) is a
cast. It says
“Don't treat this as if it's normal type, instead treat it as
a long.” The cast isn't essential, but if it wasn't
there, the addresses would have been printed out in hexadecimal instead, so
casting to a long makes things a little more
readable.
The results of this program will vary
depending on your computer, OS, and all sorts of other factors, but it will
always give you some interesting insights. For a single run on my computer, the
results looked like this:
f(): 4198736
dog: 4323632
cat: 4323636
bird: 4323640
fish: 4323644
i: 6684160
j: 6684156
k: 6684152

You can see how the variables that are
defined inside main( ) are in a different area than the variables
defined outside of main( ); you'll understand why as you learn
more about the language. Also, f( ) appears to be in its own area;
code is typically separated from data in memory.
Another interesting thing to note is that
variables defined one right after the other appear to be placed contiguously in
memory. They are separated by the number of bytes that are required by their
data type. Here, the only data type used is int, and cat is four
bytes away from dog, bird is four bytes away from cat, etc.
So it would appear that, on this machine, an int is four bytes
long.
Other than this interesting experiment
showing how memory is mapped out, what can you do with an address? The most
important thing you can do is store it inside another variable for later use. C
and C++ have a special type of variable that holds an address. This variable is
called a pointer.
The
operator that defines a pointer is the same as the one used for multiplication:
‘*'. The compiler knows that it isn't multiplication
because of the context in which it is used, as you will see.
When you define a pointer, you must
specify the type of variable it points to. You start out by giving the type
name, then instead of immediately giving an identifier for the variable, you say
“Wait, it's a pointer” by inserting a star between the type
and the identifier. So a pointer to an int looks like
this:
int* ip; // ip points to an int variable

The association of the
‘*' with the type looks sensible and reads easily, but it can
actually be a bit deceiving. Your inclination might be to say
“intpointer” as if it is a single discrete type. However, with an
int or other basic data type, it's possible to
say:
int a, b, c;

whereas with a pointer, you'd
like to say:
int* ipa, ipb, ipc;

C syntax (and by inheritance, C++ syntax)
does not allow such sensible expressions. In the definitions above, only
ipa is a pointer, but ipb and ipc are ordinary ints
(you can say that “* binds more tightly to the identifier”).
Consequently, the best results can be achieved by using only one definition per
line; you still get the sensible syntax without the confusion:
int* ipa;
int* ipb;
int* ipc;

Since a general guideline for C++
programming is that you should always initialize a variable at the point of
definition, this form actually works better. For example, the variables above
are not initialized to any particular value; they hold garbage. It's much
better to say something like:
int a = 47;
int* ipa = &a;

Now both a and ipa have
been initialized, and ipa holds the address of a.
Once you have an initialized pointer, the
most basic thing you can do with it is to use it to modify the value it points
to. To access a variable through a pointer, you
dereference the pointer using the same operator
that you used to define it, like this:
*ipa = 100;

Now a contains the value 100
instead of 47.
These are the basics of pointers: you can
hold an address, and you can use that address to modify the original variable.
But the question still remains: why do you want to modify one variable using
another variable as a proxy?
For this introductory view of pointers,
we can put the answer into two broad categories:
		To change “outside
objects” from within a function. This is perhaps the most basic use of
pointers, and it will be examined
here.
		To achieve
many other clever programming techniques, which you'll learn about in
portions of the rest of the
book.

3-4-5 - 
Modifying the outside object
Ordinarily, when you pass an argument to
a function, a copy of that argument is made inside the function. This is
referred to as
pass-by-value.You
can see the effect of pass-by-value in the following program:
//: C03:PassByValue.cpp
#include <iostream>
using namespace std;
 
void f(int a) {
  cout << "a = " << a << endl;
  a = 5;
  cout << "a = " << a << endl;
}
 
int main() {
  int x = 47;
  cout << "x = " << x << endl;
  f(x);
  cout << "x = " << x << endl;
} ///:~

In f( ), a is a
local variable, so it
exists only for the duration of the function call to f( ). Because
it's a function argument,
the value of a is initialized by the arguments that are passed when the
function is called; in main( ) the argument is x, which has a
value of 47, so this value is copied into a when f( ) is
called.
When you run this program you'll
see:
x = 47
a = 47
a = 5
x = 47

Initially, of course, x is 47.
When f( ) is called, temporary space is created to hold the variable
a for the duration of the function call, and a is initialized by
copying the value of x, which is verified by printing it out. Of course,
you can change the value of a and show that it is changed. But when
f( ) is completed, the temporary space that was created for a
disappears, and we see that the only connection that ever existed between
a and x happened when the value of x was copied into
a.
When you're inside
f( ), x is the
outside object (my
terminology), and changing the local variable does not affect the outside
object, naturally enough, since they are two separate locations in storage. But
what if you do want to modify the outside object? This is where pointers
come in handy. In a sense, a pointer is an alias for another variable. So if we
pass a pointer into a function instead of an ordinary value, we are
actually passing an alias to the outside object, enabling the function to modify
that outside object, like this:
//: C03:PassAddress.cpp
#include <iostream>
using namespace std;
 
void f(int* p) {
  cout << "p = " << p << endl;
  cout << "*p = " << *p << endl;
  *p = 5;
  cout << "p = " << p << endl;
}
 
int main() {
  int x = 47;
  cout << "x = " << x << endl;
  cout << "&x = " << &x << endl;
  f(&x);
  cout << "x = " << x << endl;
} ///:~

Now f( ) takes a pointer as
an argument and dereferences the pointer during assignment, and this causes the
outside object x to be modified. The output is:
x = 47
&x = 0065FE00
p = 0065FE00
*p = 47
p = 0065FE00
x = 5

Notice that the value contained in p
is the same as the address of x - the pointer p does
indeed point to x. If that isn't convincing enough, when p
is dereferenced to assign the value 5, we see that the value of x is now
changed to 5 as well.
Thus, passing a pointer into a function
will allow that function to modify the outside object. You'll see plenty
of other uses for pointers later, but this is arguably the most basic and
possibly the most common
use.
3-4-6 - 
Introduction to C++ references
Pointers work roughly the same in C and
in C++, but C++ adds an additional way to pass an address into a function. This
is pass-by-reference and it exists in several
other programming languages so it was not a C++ invention.
Your initial perception of references may
be that they are unnecessary, that you could write all your programs without
references. In general, this is true, with the exception of a few important
places that you'll learn about later in the book. You'll also learn
more about references later, but the basic idea is the same as the demonstration
of pointer use above: you can pass the address of an argument using a reference.
The difference between references and pointers is that
calling a function that takes references is cleaner, syntactically, than
calling a function that takes pointers (and it is exactly this syntactic
difference that makes references essential in certain situations). If
PassAddress.cpp is modified to use references, you can see the difference
in the function call in main( ):
//: C03:PassReference.cpp
#include <iostream>
using namespace std;
 
void f(int& r) {
  cout << "r = " << r << endl;
  cout << "&r = " << &r << endl;
  r = 5;
  cout << "r = " << r << endl;
}
 
int main() {
  int x = 47;
  cout << "x = " << x << endl;
  cout << "&x = " << &x << endl;
  f(x); // Looks like pass-by-value, 
        // is actually pass by reference
  cout << "x = " << x << endl;
} ///:~

In f( )'s argument
list, instead of saying int* to pass a pointer, you say int&
to pass a reference. Inside f( ), if you just say
‘r' (which would produce the address if r were a
pointer) you get the value in the variable that r references. If
you assign to r, you actually assign to the variable that r
references. In fact, the only way to get the address that's held inside
r is with the ‘&' operator.
In main( ), you can see the
key effect of references in the syntax of the call to f( ), which is
just f(x). Even though this looks like an ordinary pass-by-value, the
effect of the reference is that it actually takes the address and passes it in,
rather than making a copy of the value. The output is:
x = 47
&x = 0065FE00
r = 47
&r = 0065FE00
r = 5
x = 5

So you can see that pass-by-reference
allows a function to modify the outside object, just like passing a pointer does
(you can also observe that the reference obscures the fact that an address is
being passed; this will be examined later in the book). Thus, for this simple
introduction you can assume that references are just a syntactically different
way (sometimes referred to as “syntactic sugar”) to accomplish the
same thing that pointers do: allow functions to change outside
objects.
3-4-7 - 
Pointers and references as modifiers
So far, you've seen the basic data
types char, int, float, and double, along with the
specifiers signed, unsigned, short, and long, which
can be used with the basic data types in almost any combination. Now we've
added pointers and references that are orthogonal to the basic data types and
specifiers, so the possible combinations have just
tripled:
//: C03:AllDefinitions.cpp
// All possible combinations of basic data types, 
// specifiers, pointers and references
#include <iostream>
using namespace std;
 
void f1(char c, int i, float f, double d);
void f2(short int si, long int li, long double ld);
void f3(unsigned char uc, unsigned int ui, 
  unsigned short int usi, unsigned long int uli);
void f4(char* cp, int* ip, float* fp, double* dp);
void f5(short int* sip, long int* lip, 
  long double* ldp);
void f6(unsigned char* ucp, unsigned int* uip, 
  unsigned short int* usip, 
  unsigned long int* ulip);
void f7(char& cr, int& ir, float& fr, double& dr);
void f8(short int& sir, long int& lir, 
  long double& ldr);
void f9(unsigned char& ucr, unsigned int& uir, 
  unsigned short int& usir, 
  unsigned long int& ulir);
 
int main() {} ///:~

Pointers and references also work when
passing objects into and out of functions; you'll learn about this in a
later chapter.
There's one other type that works
with pointers: void. If you state that a pointer is
a
void*, it means that any
type of address at all can be assigned to that pointer (whereas if you have an
int*, you can assign only the address of an int variable to that
pointer). For example:
//: C03:VoidPointer.cpp
int main() {
  void* vp;
  char c;
  int i;
  float f;
  double d;
  // The address of ANY type can be
  // assigned to a void pointer:
  vp = &c;
  vp = &i;
  vp = &f;
  vp = &d;
} ///:~

Once you assign to a void* you
lose any information about what type it is. This means that before you can use
the pointer, you must cast it to the correct type:
//: C03:CastFromVoidPointer.cpp
int main() {
  int i = 99;
  void* vp = &i;
  // Can't dereference a void pointer:
  // *vp = 3; // Compile-time error
  // Must cast back to int before dereferencing:
  *((int*)vp) = 3;
} ///:~

The cast (int*)vp takes the
void* and tells the compiler to treat it as an int*, and thus it
can be successfully dereferenced. You might observe that this syntax is ugly,
and it is, but it's worse than that - the void* introduces a
hole in the language's type system. That is, it allows, or even promotes,
the treatment of one type as another type. In the example above, I treat an
int as an int by casting vp to an int*, but
there's nothing that says I can't cast it to a char* or
double*, which would modify a different amount of storage that had been
allocated for the int, possibly crashing the program. In general,
void pointers should be avoided, and used only in rare special cases, the
likes of which you won't be ready to consider until significantly later in
the book.
You cannot have a
void
reference, for reasons that will be explained in Chapter
11.
3-5 - 
Scoping
Scoping rules tell you where a variable
is valid, where it is created, and where it gets destroyed (i.e., goes out of
scope). The
scope of a variable extends from the point where it is defined to the first
closing brace that matches the closest opening brace before the variable was
defined. That is, a scope is defined by its “nearest” set of braces.
To illustrate:
//: C03:Scope.cpp
// How variables are scoped
int main() {
  int scp1;
  // scp1 visible here
  {
    // scp1 still visible here
    //.....
    int scp2;
    // scp2 visible here
    //.....
    {
      // scp1 & scp2 still visible here
      //..
      int scp3;
      // scp1, scp2 & scp3 visible here
      // ...
    } // <-- scp3 destroyed here
    // scp3 not available here
    // scp1 & scp2 still visible here
    // ...
  } // <-- scp2 destroyed here
  // scp3 & scp2 not available here
  // scp1 still visible here
  //..
} // <-- scp1 destroyed here
///:~

The example above shows when variables
are visible and when they are unavailable (that is, when they go out of
scope). A variable can be used only when inside its scope. Scopes can be
nested, indicated by matched pairs of braces inside other
matched pairs of braces. Nesting means that you can access a variable in a scope
that encloses the scope you are in. In the example above, the variable
scp1 is available inside all of the other scopes, while scp3 is
available only in the innermost
scope.
3-5-1 - 
Defining variables on the fly
As noted earlier in this chapter, there
is a significant difference between C and C++ when defining
variables.
Both languages require that variables be defined before they are used, but C
(and many other traditional procedural languages) forces you to define all the
variables at the beginning of a scope, so that when the compiler creates a block
it can allocate space for those variables. 
While reading C code, a block of variable
definitions is usually the first thing you see when entering a scope. Declaring
all variables at the beginning of the block requires the
programmer to write in a particular way because of the implementation details of
the language. Most people don't know all the variables they are going to
use before they write the code, so they must keep jumping back to the beginning
of the block to insert new variables, which is awkward and causes errors. These
variable definitions don't usually mean much to the reader, and they
actually tend to be confusing because they appear apart from the context in
which they are used.
C++ (not C) allows you to define
variables anywhere in a scope, so you can define a
variable right before you use it. In addition, you can initialize the variable
at the point you define it, which prevents a certain class of errors. Defining
variables this way makes the code much easier to write and reduces the errors
you get from being forced to jump back and forth within a scope. It makes the
code easier to understand because you see a variable defined in the context of
its use. This is especially important when you are defining and initializing a
variable at the same time - you can see the meaning of the initialization
value by the way the variable is used.
You can also define variables inside the
control expressions of for loops and
while loops, inside the conditional of an
if statement, and inside the selector statement of
a switch. Here's an example showing
on-the-fly variable definitions:
//: C03:OnTheFly.cpp
// On-the-fly variable definitions
#include <iostream>
using namespace std;
 
int main() {
  //..
  { // Begin a new scope
    int q = 0; // C requires definitions here
    //..
    // Define at point of use:
    for(int i = 0; i < 100; i++) { 
      q++; // q comes from a larger scope
      // Definition at the end of the scope:
      int p = 12; 
    }
    int p = 1;  // A different p
  } // End scope containing q & outer p
  cout << "Type characters:" << endl;
  while(char c = cin.get() != 'q') {
    cout << c << " wasn't it" << endl;
    if(char x = c == 'a' || c == 'b')
      cout << "You typed a or b" << endl;
    else
      cout << "You typed " << x << endl;
  }
  cout << "Type A, B, or C" << endl;
  switch(int i = cin.get()) {
    case 'A': cout << "Snap" << endl; break;
    case 'B': cout << "Crackle" << endl; break;
    case 'C': cout << "Pop" << endl; break;
    default: cout << "Not A, B or C!" << endl;
  }
} ///:~

In the innermost scope, p is
defined right before the scope ends, so it is really a useless gesture (but it
shows you can define a variable anywhere). The p in the outer scope is in
the same situation.
The definition of i in the control
expression of the for loop is an example of being able to define a
variable exactly at the point you need it (you can do this only in C++).
The scope of i is the scope of the expression controlled by the
for loop, so you can turn around and re-use i in the next
for loop. This is a convenient and commonly-used idiom in C++; i
is the classic name for a loop counter and you don't have to keep
inventing new names.
Although the example also shows variables
defined within while, if, and switch statements, this kind
of definition is much less common than those in for expressions, possibly
because the syntax is so constrained. For example, you cannot have any
parentheses. That is, you cannot say:
while((char c = cin.get()) != 'q')

The addition of the extra parentheses
would seem like an innocent and useful thing to do, and because you cannot use
them, the results are not what you might like. The problem occurs because
‘!=' has a higher precedence than ‘=', so
the char c ends up containing a bool converted to
char. When that's printed, on many terminals you'll see a
smiley-face character.
In general, you can consider the ability
to define variables within while, if, and switch statements
as being there for completeness, but the only place you're likely to use
this kind of variable definition is in a for loop (where you'll use
it quite
often).
3-6 - 
Specifying storage allocation
When creating a variable, you have a
number of options to specify the lifetime of the variable, how the storage is
allocated for that variable, and how the variable is treated by the
compiler.
3-6-1 - 
Global variables
Global variables are defined outside all
function bodies and are available to all parts of the program (even code in
other files). Global variables are unaffected by scopes and are always available
(i.e., the lifetime of a global variable lasts until the program ends). If the
existence of a global variable in one file is declared using the
extern keyword in another
file, the data is available for use by the second file. Here's an example
of the use of global variables:
//: C03:Global.cpp
//{L} Global2
// Demonstration of global variables
#include <iostream>
using namespace std;
 
int globe;
void func();
int main() {
  globe = 12;
  cout << globe << endl;
  func(); // Modifies globe
  cout << globe << endl;
} ///:~

Here's a file that accesses
globe as an extern:
//: C03:Global2.cpp {O}
// Accessing external global variables
extern int globe;  
// (The linker resolves the reference)
void func() {
  globe = 47;
} ///:~

Storage for the variable globe is
created by the definition in Global.cpp, and that same variable is
accessed by the code in Global2.cpp. Since the code in Global2.cpp
is compiled separately from the code in Global.cpp, the compiler must be
informed that the variable exists elsewhere by the declaration 
extern int globe;

When you run the program, you'll
see that the call to func( ) does indeed affect the single global
instance of globe.
In Global.cpp, you can see the
special comment tag (which is my
own design):
//{L} Global2

This says that to create the final
program, the object file with the name Global2 must be linked in (there
is no extension because the extension names of object files differ from one
system to the next). In Global2.cpp, the first line has another special
comment tag {O}, which says “Don't try to create an
executable out of this file, it's being compiled so that it can be linked
into some other executable.” The ExtractCode.cpp program in Volume
2 of this book (downloadable at www.BruceEckel.com) reads these tags and
creates the appropriate makefile so everything compiles properly
(you'll learn about makefiles at the end of this
chapter).
3-6-2 - 
Local variables
Local variables occur within a scope;
they are “local” to a function. They are often called
automatic variables because
they automatically come into being when the scope is entered and automatically
go away when the scope closes. The keyword
auto makes this explicit,
but local variables default to auto so it is never necessary to declare
something as an auto.

Register variables
A register variable is a type of local
variable. The register keyword tells the compiler
“Make accesses to this variable as fast as possible.” Increasing the
access speed is implementation dependent, but, as the name suggests, it is often
done by placing the variable in a register. There is no guarantee that the
variable will be placed in a register or even that the access speed will
increase. It is a hint to the compiler.
There are restrictions to the use of
register variables. You cannot take or compute the address of a
register variable. A register variable can be declared only within
a block (you cannot have global or static register variables). You
can, however, use a register variable as a formal argument in a function
(i.e., in the argument list).
In general, you shouldn't try to
second-guess the compiler's optimizer, since it will probably do a better
job than you can. Thus, the register keyword is best
avoided.
3-6-3 - 
static
The
static keyword has several
distinct meanings. Normally, variables defined local to a function disappear at
the end of the function scope. When you call the function again, storage for the
variables is created anew and the values are re-initialized. If you want a value
to be extant throughout the life of a program, you can define a function's
local variable to be static and give it an initial value. The
initialization is performed only the first time the function is called, and the
data retains its value between function calls. This way, a function can
“remember” some piece of information between function
calls.
You may wonder why a global variable
isn't used instead. The beauty of a static variable is that it is
unavailable outside the scope of the function, so it can't be
inadvertently changed. This localizes errors.
Here's an example of the use of
static variables:
//: C03:Static.cpp
// Using a static variable in a function
#include <iostream>
using namespace std;
 
void func() {
  static int i = 0;
  cout << "i = " << ++i << endl;
}
 
int main() {
  for(int x = 0; x < 10; x++)
    func();
} ///:~

Each time func( ) is called
in the for loop, it prints a different value. If the keyword static is
not used, the value printed will always be ‘1'.
The second meaning of static is
related to the first in the “unavailable outside a certain scope”
sense. When static is applied to a function name or to a variable that is
outside of all functions, it means “This name is unavailable outside of
this file.” The function name or variable is local to the file; we say it
has file
scope.
As a demonstration, compiling and linking the following two files will cause a
linker error:
//: C03:FileStatic.cpp
// File scope demonstration. Compiling and 
// linking this file with FileStatic2.cpp
// will cause a linker error
 
// File scope means only available in this file:
static int fs; 
 
int main() {
  fs = 1;
} ///:~

Even though the variable fs is
claimed to exist as an extern in the following
file, the linker won't find it because it has been declared static
in FileStatic.cpp.
//: C03:FileStatic2.cpp {O}
// Trying to reference fs
extern int fs;
void func() {
  fs = 100;
} ///:~

The static specifier may also be
used inside a class. This explanation will be delayed until you learn to
create classes, later in the
book.
3-6-4 - 
extern
The
extern keyword has already
been briefly described and demonstrated. It tells the compiler that a variable
or a function exists, even if the compiler hasn't yet seen it in the file
currently being compiled. This variable or function may be defined in another
file or further down in the current file. As an example of the
latter:
//: C03:Forward.cpp
// Forward function & data declarations
#include <iostream>
using namespace std;
 
// This is not actually external, but the 
// compiler must be told it exists somewhere:
extern int i; 
extern void func();
int main() {
  i = 0;
  func();
}
int i; // The data definition
void func() {
  i++;
  cout << i;
} ///:~

When the compiler encounters the
declaration ‘extern int i', it knows that the definition for
i must exist somewhere as a global variable. When the compiler reaches
the definition of i, no other declaration is visible, so it knows it has
found the same i declared earlier in the file. If you were to define
i as static, you would be telling the compiler that i is
defined globally (via the extern), but it also has file
scope (via the static), so the compiler will
generate an error.

Linkage
To understand the behavior of C and C++
programs, you need to know about linkage. In an executing program, an
identifier is represented by storage in memory that holds a variable or a
compiled function body. Linkage describes this storage as it is seen by the
linker. There are two types of linkage: internal
linkage and external
linkage.
Internal linkage means that storage is
created to represent the identifier only for the file being compiled. Other
files may use the same identifier name with internal linkage, or for a global
variable, and no conflicts will be found by the linker - separate storage
is created for each identifier. Internal linkage is specified by the keyword
static in C and C++.
External linkage means that a single
piece of storage is created to represent the identifier for all files being
compiled. The storage is created once, and the linker must resolve all other
references to that storage. Global variables and function names have external
linkage. These are accessed from other files by declaring them with the keyword
extern. Variables defined outside all functions (with the exception of
const in C++) and function definitions default to external linkage. You
can specifically force them to have internal linkage using the static
keyword. You can explicitly state that an identifier has external linkage by
defining it with the extern keyword. Defining a variable or function with
extern is not necessary in C, but it is sometimes necessary for
const in C++.
Automatic (local) variables exist only
temporarily, on the stack, while a function is being called. The linker
doesn't know about automatic
variables, and so these have no
linkage.
3-6-5 - 
Constants
In old (pre-Standard) C, if you wanted to
make a constant, you had to use the
preprocessor:
#define PI 3.14159

Everywhere you used PI, the value
3.14159 was substituted by the preprocessor (you can still use this method in C
and C++). 
When you use the preprocessor to create
constants, you place control of those constants outside the scope of the
compiler. No type checking is performed on the name
PI and you can't take the address of PI (so you can't
pass a pointer or a reference to
PI). PI cannot be a variable of a user-defined type. The meaning
of PI lasts from the point it is defined to the end of the file; the
preprocessor doesn't recognize scoping.
C++ introduces the concept of a named
constant that is just like a
variable, except that its value cannot be changed. The modifier
const tells the compiler
that a name represents a constant. Any data type, built-in or user-defined, may
be defined as const. If you define something as const and then
attempt to modify it, the compiler will generate an error.
You must specify the type of a
const, like this:
const int x = 10;

In Standard C and C++, you can use a
named constant in an argument list, even if the argument it fills is a pointer
or a reference (i.e., you can take the address of a const). A
const has a scope, just like a regular variable, so you can
“hide” a const inside a function and be sure that the name
will not affect the rest of the program.
The const was taken from C++ and
incorporated into Standard C, albeit quite differently. In C, the compiler
treats a const just like a variable that has a special tag attached that
says “Don't change me.” When you define a const in C,
the compiler creates storage for it, so if you define more than one const
with the same name in two different files (or put the definition in a header
file), the linker will generate error messages about conflicts. The intended use
of const in C is quite different from its intended use in C++ (in short,
it's nicer in C++).

Constant values
In C++, a const must always have
an initialization value (in C, this is not true). Constant values for built-in
types are expressed as decimal,
octal, hexadecimal, or
floating-point numbers (sadly, binary numbers were not
considered important), or as characters.
In the absence of any other clues, the
compiler assumes a constant value is a decimal number. The numbers 47, 0, and
1101 are all treated as decimal numbers.
A constant value with a leading 0 is
treated as an octal number (base 8). Base 8 numbers can contain only digits 0-7;
the compiler flags other digits as an error. A legitimate octal number is 017
(15 in base 10).
A constant value with a leading 0x is
treated as a hexadecimal number (base 16). Base 16 numbers contain the digits
0-9 and a-f or A-F. A legitimate hexadecimal number is 0x1fe (510 in base
10).
Floating point numbers can contain
decimal points and exponential powers (represented by e,
which means “10 to the power of”). Both the decimal point and the
e are optional. If you assign a constant to a floating-point variable,
the compiler will take the constant value and convert it to a floating-point
number (this process is one form of what's called implicit type
conversion). However, it is a
good idea to use either a decimal point or an e to remind the reader that
you are using a floating-point number; some older compilers also need the
hint.
Legitimate floating-point constant values
are: 1e4, 1.0001, 47.0, 0.0, and -1.159e-77. You can add suffixes to force the
type of floating-point number: f or F forces a float,
L or l forces a long double; otherwise the number
will be a
double.
Character
constants are characters surrounded by single quotes, as:
‘A', ‘0', ‘ ‘. Notice there is
a big difference between the character ‘0' (ASCII 96) and the
value 0. Special characters are represented with the “backslash
escape”: ‘\n' (newline), ‘\t' (tab),
‘\\' (backslash), ‘\r' (carriage return),
‘\"' (double quotes), ‘\'' (single quote),
etc. You can also express char constants in octal: ‘\17' or
hexadecimal:
‘\xff'.
3-6-6 - 
volatile
Whereas the qualifier const tells
the compiler “This never changes” (which allows the compiler to
perform extra optimizations), the qualifier
volatile tells the compiler “You never know
when this will change,” and prevents the compiler from performing any
optimizations based on the stability of that variable. Use this keyword when you
read some value outside the control of your code, such as a register in a piece
of communication hardware. A volatile variable is always read whenever
its value is required, even if it was just read the line
before.
A special case of some storage being
“outside the control of your code” is in a multithreaded program. If
you're watching a particular flag that is modified by another thread or
process, that flag should be volatile so the compiler doesn't make
the assumption that it can optimize away multiple reads of the
flag.
Note that volatile may have no
effect when a compiler is not optimizing, but may prevent critical bugs when you
start optimizing the code (which is when the compiler will begin looking for
redundant reads).
The const and volatile
keywords will be further illuminated in a later
chapter.
3-7 - 
Operators and their
use
This section covers all the operators in
C and C++.
All operators produce a value from their
operands. This value is produced without modifying the operands, except with the
assignment, increment, and decrement operators. Modifying an operand is called a
side effect. The most common use for operators
that modify their operands is to generate the side effect, but you should keep
in mind that the value produced is available for your use just as in operators
without side
effects.
3-7-1 - 
Assignment
Assignment is performed with the operator
=. It means “Take the right-hand side (often
called the rvalue) and copy it into the left-hand
side (often called the lvalue).” An rvalue
is any constant, variable, or expression that can produce a value, but an lvalue
must be a distinct, named variable (that is, there must be a physical space in
which to store data). For instance, you can assign a constant value to a
variable (A = 4;), but you cannot assign anything to constant value
- it cannot be an lvalue (you can't say 4 =
A;).
3-7-2 - 
Mathematical operators
The basic mathematical operators are the
same as the ones available in most programming languages: addition
(+),
subtraction (-),
division (/),
multiplication (*), and
modulus (%; this produces
the remainder from integer division). Integer division truncates the result (it
doesn't round). The modulus operator cannot be used with floating-point
numbers.
C and C++ also use a shorthand notation
to perform an operation and an assignment at the same time. This is denoted by
an operator followed by an equal sign, and is consistent with all the operators
in the language (whenever it makes sense). For example, to add 4 to the variable
x and assign x to the result, you say: x += 4;.

This example shows the use of the
mathematical operators:
//: C03:Mathops.cpp
// Mathematical operators
#include <iostream>
using namespace std;
 
// A macro to display a string and a value.
#define PRINT(STR, VAR) \
  cout << STR " = " << VAR << endl
 
int main() {
  int i, j, k;
  float u, v, w;  // Applies to doubles, too
  cout << "enter an integer: ";
  cin >> j;
  cout << "enter another integer: ";
  cin >> k;
  PRINT("j",j);  PRINT("k",k);
  i = j + k; PRINT("j + k",i);
  i = j - k; PRINT("j - k",i);
  i = k / j; PRINT("k / j",i);
  i = k * j; PRINT("k * j",i);
  i = k % j; PRINT("k % j",i);
  // The following only works with integers:
  j %= k; PRINT("j %= k", j);
  cout << "Enter a floating-point number: ";
  cin >> v;
  cout << "Enter another floating-point number:";
  cin >> w;
  PRINT("v",v); PRINT("w",w);
  u = v + w; PRINT("v + w", u);
  u = v - w; PRINT("v - w", u);
  u = v * w; PRINT("v * w", u);
  u = v / w; PRINT("v / w", u);
  // The following works for ints, chars, 
  // and doubles too:
  PRINT("u", u); PRINT("v", v);
  u += v; PRINT("u += v", u);
  u -= v; PRINT("u -= v", u);
  u *= v; PRINT("u *= v", u);
  u /= v; PRINT("u /= v", u);
} ///:~

The rvalues of all the assignments can,
of course, be much more complex.

Introduction to preprocessor
macros
Notice the use of the macro
PRINT( ) to save typing (and typing errors!). Preprocessor macros
are traditionally named with all uppercase letters so they stand out -
you'll learn later that macros can quickly become dangerous (and they can
also be very useful). 
The arguments in the parenthesized list
following the macro name are substituted in all the code following the closing
parenthesis. The preprocessor removes the name PRINT and substitutes the
code wherever the macro is called, so the compiler cannot generate any error
messages using the macro name, and it doesn't do any type checking on the
arguments (the latter can be beneficial, as shown in the debugging macros at the
end of the
chapter).
3-7-3 - 
Relational operators
Relational operators establish a
relationship between the values of the operands. They produce a Boolean
(specified with the bool keyword in C++) true if the relationship
is true, and false if the relationship is false. The relational operators
are: less than (<), greater than
(>), less than or equal to
(<=), greater than or equal to
(>=), equivalent
(==), and not equivalent
(!=).
They may be used with all built-in data types in C and C++. They may be given
special definitions for user-defined data types in C++ (you'll learn about
this in Chapter 12, which covers operator
overloading).
3-7-4 - 
Logical operators
The logical operators and
(&&)
and or
(||)
produce a true or false
based on
the logical relationship of its arguments. Remember that in C and C++, a
statement is true if it has a non-zero value, and false if it has
a value of zero. If you print a bool, you'll typically see a
‘1' for true and ‘0' for
false.
This example uses the relational and
logical operators:
//: C03:Boolean.cpp
// Relational and logical operators.
#include <iostream>
using namespace std;
 
int main() {
  int i,j;
  cout << "Enter an integer: ";
  cin >> i;
  cout << "Enter another integer: ";
  cin >> j;
  cout << "i > j is " << (i > j) << endl;
  cout << "i < j is " << (i < j) << endl;
  cout << "i >= j is " << (i >= j) << endl;
  cout << "i <= j is " << (i <= j) << endl;
  cout << "i == j is " << (i == j) << endl;
  cout << "i != j is " << (i != j) << endl;
  cout << "i && j is " << (i && j) << endl;
  cout << "i || j is " << (i || j) << endl;
  cout << " (i < 10) && (j < 10) is "
       << ((i < 10) && (j < 10))  << endl;
} ///:~

You can replace the definition for
int with float or double in the program above. Be aware,
however, that the comparison of a floating-point number with the value of zero
is strict; a number that is the tiniest fraction different from another number
is still “not equal.” A floating-point number that is the tiniest
bit above zero is still
true.
3-7-5 - 
Bitwise operators
The bitwise operators allow you to
manipulate individual bits in a number (since floating point values use a
special internal format, the bitwise operators work only with integral types:
char, int and long). Bitwise operators perform Boolean
algebra on the corresponding bits in the arguments to
produce the result.
The bitwise
and operator
(&) produces a one in
the output bit if both input bits are one; otherwise it produces a zero. The
bitwise or operator
(|) produces a one in the
output bit if either input bit is a one and produces a zero only if both input
bits are zero. The bitwise exclusive or, or xor
(^)
produces a one in the output bit if one or the other input bit is a one, but not
both. The bitwise not
(~, also called the ones complement
operator) is a unary
operator - it only takes one
argument (all other bitwise operators are binary
operators). Bitwise not
produces the opposite of the input bit - a one if the input bit is zero, a
zero if the input bit is one.
Bitwise operators can be combined with
the = sign to unite the operation and assignment:
&=, |=, and
^= are all legitimate operations (since ~
is a unary operator it cannot be combined with the =
sign).
3-7-6 - 
Shift operators
The shift operators also manipulate bits.
The left-shift operator
(<<) produces the
operand to the left of the operator shifted to the left by the number of bits
specified after the operator. The right-shift operator
(>>) produces the
operand to the left of the operator shifted to the right by the number of bits
specified after the operator. If the value after the shift operator is greater
than the number of bits in the left-hand operand, the result is undefined. If
the left-hand operand is unsigned, the right shift is a logical shift so the
upper bits will be filled with zeros. If the left-hand operand is signed, the
right shift may or may not be a logical shift (that is, the behavior is
undefined).
Shifts can be combined with the equal
sign (<<= and
>>=). The lvalue is
replaced by the lvalue shifted by the rvalue.
What follows is an example that
demonstrates the use of all the operators involving bits. First, here's a
general-purpose function that prints a byte in binary format, created separately
so that it may be easily reused. The header file declares the
function:
//: C03:printBinary.h
// Display a byte in binary
void printBinary(const unsigned char val);
///:~

Here's the implementation of the
function:
//: C03:printBinary.cpp {O}
#include <iostream>
void printBinary(const unsigned char val) {
  for(int i = 7; i >= 0; i--)
    if(val & (1 << i))
      std::cout << "1";
    else
      std::cout << "0";
} ///:~

The printBinary( ) function
takes a single byte and displays it bit-by-bit.  The expression

(1 << i)

produces a one in each successive bit
position; in binary: 00000001, 00000010, etc. If this bit is bitwise
anded with val and the result is nonzero, it means there was a one
in that position in val.
Finally, the function is used in the
example that shows the bit-manipulation operators:
//: C03:Bitwise.cpp
//{L} printBinary
// Demonstration of bit manipulation
#include "printBinary.h"
#include <iostream>
using namespace std;
 
// A macro to save typing:
#define PR(STR, EXPR) \
  cout << STR; printBinary(EXPR); cout << endl;  
 
int main() {
  unsigned int getval;
  unsigned char a, b;
  cout << "Enter a number between 0 and 255: ";
  cin >> getval; a = getval;
  PR("a in binary: ", a);
  cout << "Enter a number between 0 and 255: ";
  cin >> getval; b = getval;
  PR("b in binary: ", b);
  PR("a | b = ", a | b);
  PR("a & b = ", a & b);
  PR("a ^ b = ", a ^ b);
  PR("~a = ", ~a);
  PR("~b = ", ~b);
  // An interesting bit pattern:
  unsigned char c = 0x5A; 
  PR("c in binary: ", c);
  a |= c;
  PR("a |= c; a = ", a);
  b &= c;
  PR("b &= c; b = ", b);
  b ^= a;
  PR("b ^= a; b = ", b);
} ///:~

Once again, a preprocessor macro is used
to save typing. It prints the string of your choice, then the binary
representation of an expression, then a newline.
In main( ), the variables are
unsigned. This is because, in general, you don't want signs when you are
working with bytes. An int must be used instead of a char for
getval because the “cin >>” statement will
otherwise treat the first digit as a character.  By assigning getval to
a and b, the value is converted to a single byte (by truncating
it).
The << and >>
provide bit-shifting behavior, but when they shift bits
off the end of the number, those bits are lost (it's commonly said that
they fall into the mythical bit
bucket, a place where discarded bits end up, presumably so they can be
reused...). When manipulating bits you can also perform
rotation, which means that the bits that fall off
one end are inserted back at the other end, as if they're being rotated
around a loop. Even though most computer processors provide a machine-level
rotate command (so you'll see it in the assembly language for that
processor), there is no direct support for “rotate” in C or C++.
Presumably the designers of C felt justified in leaving
“rotate” off (aiming, as they said, for a minimal language) because
you can build your own rotate command. For example, here are functions to
perform left and right rotations:
//: C03:Rotation.cpp {O}
// Perform left and right rotations
 
unsigned char rol(unsigned char val) {
  int highbit;
  if(val & 0x80) // 0x80 is the high bit only
    highbit = 1;
  else
    highbit = 0;
  // Left shift (bottom bit becomes 0):
  val <<= 1;
  // Rotate the high bit onto the bottom:
  val |= highbit;
  return val;
}
 
unsigned char ror(unsigned char val) {
  int lowbit;
  if(val & 1) // Check the low bit
    lowbit = 1;
  else
    lowbit = 0;
  val >>= 1; // Right shift by one position
  // Rotate the low bit onto the top:
  val |= (lowbit << 7);
  return val;
} ///:~

Try using these functions in
Bitwise.cpp. Notice the definitions (or at least declarations) of
rol( ) and ror( ) must be seen by the compiler in
Bitwise.cpp before the functions are used.
The bitwise functions are generally
extremely efficient to use because they translate directly into assembly
language statements. Sometimes a single C or C++ statement will generate a
single line of assembly
code.
3-7-7 - 
Unary operators
Bitwise not isn't the only
operator that takes a single argument. Its companion, the logical not
(!), will take a
true value and produce a false
value. The
unary minus (-) and unary
plus (+) are the same
operators as binary minus and plus; the compiler figures out which usage is
intended by the way you write the expression. For instance, the
statement
x = -a;

has an obvious meaning. The compiler can
figure out:
x = a * -b;

but the reader might get confused, so it
is safer to say:
x = a * (-b);

The unary minus produces the negative of
the value. Unary plus provides symmetry with unary minus, although it
doesn't actually do anything.
The increment and
decrement
operators (++ and --) were introduced earlier in this chapter.
These are the only operators other than those involving assignment that have
side effects. These operators increase or decrease the
variable by one unit, although “unit” can have different meanings
according to the data type - this is especially true with
pointers.
The
last unary operators are the address-of
(&), dereference
(* and ->), and
cast operators in C and C++, and
new and delete in
C++. Address-of and dereference are used with pointers,
described in this chapter. Casting is described later in this chapter, and
new and delete are introduced in Chapter
4.
3-7-8 - 
The ternary
operator
The ternary
if-else is unusual because it has three operands.
It is truly an operator because it produces a value, unlike the ordinary
if-else statement. It consists of three
expressions: if the first expression (followed by a ?) evaluates to
true, the expression following the ? is evaluated and its result
becomes the value produced by the operator. If the first expression is
false, the third expression (following a :) is executed and its
result becomes the value produced by the operator.
The conditional operator can be used for
its side effects or for the value it produces. Here's a code fragment that
demonstrates both:
a = --b ? b : (b = -99);

Here, the conditional produces the
rvalue. a is assigned to the value of b if the result of
decrementing b is nonzero. If b became zero, a and b
are both assigned to -99. b is always decremented, but it is assigned to
-99 only if the decrement causes b to become 0. A similar statement can
be used without the “a =” just for its side
effects:
--b ? b : (b = -99);

Here the second B is superfluous, since
the value produced by the operator is unused. An expression is required between
the ? and :. In this case, the expression could simply be a
constant that might make the code run a bit
faster.
3-7-9 - 
The comma operator
The comma is not restricted to separating
variable names in multiple definitions, such as 
int i, j, k;

Of course, it's also used in
function argument lists. However, it can also be used as an operator to separate
expressions - in this case it produces only the value of the last
expression. All the rest of the expressions in the comma-separated list are
evaluated only for their side effects. This example increments a list of
variables and uses the last one as the rvalue:
//: C03:CommaOperator.cpp
#include <iostream>
using namespace std;
int main() {
  int a = 0, b = 1, c = 2, d = 3, e = 4;
  a = (b++, c++, d++, e++);
  cout << "a = " << a << endl;
  // The parentheses are critical here. Without
  // them, the statement will evaluate to:
  (a = b++), c++, d++, e++;
  cout << "a = " << a << endl;
} ///:~

In general, it's best to avoid
using the comma as anything other than a separator, since people are not used to
seeing it as an
operator.
3-7-10 - 
Common pitfalls when using
operators
As illustrated above, one of the pitfalls
when using operators is trying to get away without parentheses when you are even
the least bit uncertain about how an expression will evaluate (consult your
local C manual for the order of expression evaluation).
Another extremely common error looks like
this:
//: C03:Pitfall.cpp
// Operator mistakes
 
int main() {
  int a = 1, b = 1;
  while(a = b) {
    // ....
  }
} ///:~

The statement a = b will always
evaluate to true when b is non-zero. The variable
a is assigned to the value of b, and the value of b is also
produced by the operator =. In general, you want
to use the equivalence operator
== inside a conditional statement, not assignment. This one bites a lot
of programmers (however, some compilers will point out the problem to you, which
is helpful).
A similar problem is using bitwise
and and or instead of their logical counterparts. Bitwise
and and or use one of the characters (& or |),
while logical and and or use two (&& and
||). Just as with = and ==, it's easy to just type
one character instead of two. A useful mnemonic device is to observe that
“Bits are smaller, so they don't need as many characters in their
operators.”
3-7-11 - 
Casting operators
The word cast is used in the sense
of “casting into a mold.” The compiler will automatically change one
type of data into another if it makes sense. For instance, if you assign an
integral value to a floating-point variable, the compiler will secretly call a
function (or more probably, insert code) to convert the int to a
float. Casting allows you to make this type conversion explicit, or to
force it when it wouldn't normally happen.
To perform a cast, put the desired data
type (including all modifiers) inside parentheses to the left of the value. This
value can be a variable, a constant, the value produced by an expression, or the
return value of a function. Here's an example:
//: C03:SimpleCast.cpp
int main() {
  int b = 200;
  unsigned long a = (unsigned long int)b;
} ///:~

Casting is powerful, but it can cause
headaches because in some situations it forces the compiler to treat data as if
it were (for instance) larger than it really is, so it will occupy more space in
memory; this can trample over other data. This usually occurs when casting
pointers, not when making simple casts like the one shown
above.
C++ has an additional casting syntax,
which follows the function call syntax. This syntax puts the parentheses around
the argument, like a function call, rather than around the data
type:
//: C03:FunctionCallCast.cpp
int main() {
  float a = float(200);
  // This is equivalent to:
  float b = (float)200;
} ///:~

Of course in the case above you
wouldn't really need a cast; you could just say 200.f or
200.0f(in effect, that's typically what the compiler will do
for the above expression). Casts are usually
used with variables, rather than with
constants.
3-7-12 - 
C++ explicit casts
Casts should be used carefully, because
what you are actually doing is saying to the compiler “Forget
type checking - treat it as this other type
instead.” That is, you're introducing a hole in the C++ type system
and preventing the compiler from telling you that you're doing something
wrong with a type. What's worse, the compiler believes you implicitly and
doesn't perform any other checking to catch errors. Once you start
casting, you open yourself up for all kinds of problems. In fact, any program
that uses a lot of casts should be viewed with suspicion, no matter how much you
are told it simply “must” be done that way. In general, casts should
be few and isolated to the solution of very specific problems.
Once you understand this and are
presented with a buggy program, your first inclination
may be to look for casts as culprits. But how do you locate C-style casts? They
are simply type names inside of parentheses, and if you start hunting for such
things you'll discover that it's often hard to distinguish them from
the rest of your code.
Standard C++ includes an explicit cast
syntax that can be used to completely replace the old C-style casts (of course,
C-style casts cannot be outlawed without breaking code, but compiler writers
could easily flag old-style casts for you). The explicit cast syntax is such
that you can easily find them, as you can see by their names:
	static_cast	For “well-behaved” and
“reasonably well-behaved” casts, including things you might now do
without a cast (such as an automatic type conversion).
	const_cast	To cast away const and/or
volatile.
	reinterpret_cast	To cast to a completely different
meaning. The key is that you'll need to cast back to the original type to
use it safely. The type you cast to is typically used only for bit twiddling or
some other mysterious purpose. This is the most dangerous of all the
casts.
	dynamic_cast	For type-safe downcasting (this cast will
be described in Chapter 15).



The first three explicit casts will
be described more completely in the following sections, while the last one can
be demonstrated only after you've learned more, in Chapter
15.

static_cast
A static_cast is used for all
conversions that are well-defined. These include “safe” conversions
that the compiler would allow you to do without a cast and less-safe conversions
that are nonetheless well-defined. The types of conversions covered by
static_cast include typical castless conversions, narrowing
(information-losing) conversions, forcing a conversion from a void*,
implicit type conversions, and static navigation of class hierarchies (since you
haven't seen classes and inheritance yet, this last topic will be delayed
until Chapter 15):
//: C03:static_cast.cpp
void func(int) {}
 
int main() {
  int i = 0x7fff; // Max pos value = 32767
  long l;
  float f;
  // (1) Typical castless conversions:
  l = i;
  f = i;
  // Also works:
  l = static_cast<long>(i);
  f = static_cast<float>(i);
 
  // (2) Narrowing conversions:
  i = l; // May lose digits
  i = f; // May lose info
  // Says "I know," eliminates warnings:
  i = static_cast<int>(l);
  i = static_cast<int>(f);
  char c = static_cast<char>(i);
 
  // (3) Forcing a conversion from void* :
  void* vp = &i;
  // Old way produces a dangerous conversion:
  float* fp = (float*)vp;
  // The new way is equally dangerous:
  fp = static_cast<float*>(vp);
 
  // (4) Implicit type conversions, normally
  // performed by the compiler:
  double d = 0.0;
  int x = d; // Automatic type conversion
  x = static_cast<int>(d); // More explicit
  func(d); // Automatic type conversion
  func(static_cast<int>(d)); // More explicit
} ///:~

In Section (1), you see the kinds of
conversions you're used to doing in C, with or without a cast. Promoting
from an int to a long or float is not a problem because the
latter can always hold every value that an int can contain. Although
it's unnecessary, you can use static_cast to highlight these
promotions.
Converting back the other way is shown in
(2). Here, you can lose data because an int is not as “wide”
as a long or a float; it won't hold numbers of the same
size. Thus these are called narrowing
conversions. The compiler will
still perform these, but will often give you a warning. You can eliminate this
warning and indicate that you really did mean it using a cast.
Assigning from a
void* is not allowed without a cast in C++ (unlike
C), as seen in (3). This is dangerous and requires that programmers know what
they're doing. The static_cast, at least, is easier to locate than
the old standard cast when you're hunting for bugs.
Section (4) of the program shows the
kinds of implicit type conversions that are normally performed automatically by
the compiler. These are automatic and require no casting, but again
static_cast highlights the action in case you want to make it clear
what's happening or hunt for it
later.

const_cast
If you want to convert from a
const to a nonconst or from a
volatile to a nonvolatile, you use
const_cast. This is the only conversion allowed with
const_cast; if any other conversion is involved it must be done using a
separate expression or you'll get a compile-time error.
//: C03:const_cast.cpp
int main() {
  const int i = 0;
  int* j = (int*)&i; // Deprecated form
  j  = const_cast<int*>(&i); // Preferred
  // Can't do simultaneous additional casting:
//! long* l = const_cast<long*>(&i); // Error
  volatile int k = 0;
  int* u = const_cast<int*>(&k);
} ///:~

If you take the address of a const
object, you produce a pointer to a
const, and this cannot be assigned to a nonconst pointer without a
cast. The old-style cast will accomplish this, but the const_cast is the
appropriate one to use. The same holds true for
volatile.

reinterpret_cast
This is the least safe of the casting
mechanisms, and the one most likely to produce bugs. A reinterpret_cast
pretends that an object is just a bit pattern that can be treated (for some dark
purpose) as if it were an entirely different type of object. This is the
low-level bit twiddling that C is notorious for. You'll virtually always
need to reinterpret_cast back to the original type (or otherwise treat
the variable as its original type) before doing anything else with
it.
//: C03:reinterpret_cast.cpp
#include <iostream>
using namespace std;
const int sz = 100;
 
struct X { int a[sz]; };
 
void print(X* x) {
  for(int i = 0; i < sz; i++)
    cout << x->a[i] << ' ';
  cout << endl << "--------------------" << endl;
}
 
int main() {
  X x;
  print(&x);
  int* xp = reinterpret_cast<int*>(&x);
  for(int* i = xp; i < xp + sz; i++)
    *i = 0;
  // Can't use xp as an X* at this point
  // unless you cast it back:
  print(reinterpret_cast<X*>(xp));
  // In this example, you can also just use
  // the original identifier:
  print(&x);
} ///:~

In this simple example, struct X
just contains an array of int, but when you create one on the stack as in
X x, the values of each of the ints are garbage (this is shown
using the print( ) function to display the contents of the
struct). To initialize them, the address of the X is taken and
cast to an int pointer, which is then walked through the array to set
each int to zero. Notice how the upper bound for i is calculated
by “adding” sz to xp; the compiler knows that you
actually want sz pointer locations greater than xp and it does the
correct pointer arithmetic for you.
The idea of reinterpret_cast is
that when you use it, what you get is so foreign that it cannot be used for the
type's original purpose unless you cast it back. Here, we see the cast
back to an X* in the call to print, but of course since you still have
the original identifier you can also use that. But the xp is only useful
as an int*, which is truly a “reinterpretation” of the
original X. 
A reinterpret_cast often indicates
inadvisable and/or nonportable programming, but it's available when you
decide you have to use
it.
3-7-13 - 
sizeof - an operator by itself

The sizeof
operator stands alone because it satisfies an unusual need. sizeof gives
you information about the amount of memory allocated for data items. As
described earlier in this chapter, sizeof tells you the number of bytes
used by any particular variable. It can also give the size of a data type (with
no variable name):
//: C03:sizeof.cpp
#include <iostream>
using namespace std;
int main() {
  cout << "sizeof(double) = " << sizeof(double);
  cout << ", sizeof(char) = " << sizeof(char);
} ///:~

By definition, the
sizeof any type of
char (signed, unsigned or plain) is always one, regardless
of whether the underlying storage for a char is actually one byte. For
all other types, the result is the size in bytes.
Note that sizeof is an operator,
not a function. If you apply it to a type, it must be used with the
parenthesized form shown above, but if you apply it to a variable you can use it
without parentheses:
//: C03:sizeofOperator.cpp
int main() {
  int x;
  int i = sizeof x;
} ///:~

sizeof can also give you the sizes
of user-defined data types. This is used later in the
book.
3-7-14 - 
The asm keyword
This is an escape mechanism that allows
you to write assembly code for your hardware within a C++ program. Often
you're able to reference C++ variables within the assembly code, which
means you can easily communicate with your C++ code and limit the assembly code
to that necessary for efficiency tuning or to use special processor
instructions. The exact syntax that you must use when writing the assembly
language is compiler-dependent and can be discovered in your compiler's
documentation.
3-7-15 - 
Explicit operators
These are keywords for bitwise and
logical
operators.
Non-U.S. programmers without keyboard characters like &, |,
^, and so on, were forced to use C's horrible trigraphs,
which were not only annoying to type, but obscure when reading. This is repaired
in C++ with additional
keywords:

	Keyword	Meaning
	and	&& (logical
and)
	or	|| (logical
or)
	not	! (logical NOT)
	 not_eq	!= (logical
not-equivalent)
	bitand	& (bitwise
and)
	and_eq	&= (bitwise
and-assignment)
	bitor	| (bitwise
or)
	or_eq	|= (bitwise or-assignment)

	xor	^ (bitwise
exclusive-or)
	xor_eq	^= (bitwise
exclusive-or-assignment)
	compl	~ (ones
complement)


If your compiler complies with Standard
C++, it will support these
keywords.
3-8 - 
Composite type creation
The fundamental data types and their
variations are essential, but rather primitive. C and C++ provide tools that
allow you to compose more sophisticated data types from the fundamental data
types. As you'll see, the most important of these is struct, which
is the foundation for class in C++. However, the simplest way to create
more sophisticated types is simply to alias a name to another name via
typedef.
3-8-1 - 
Aliasing names with typedef
This keyword promises more than it
delivers: typedef suggests
“type definition” when “alias” would probably have been
a more accurate description, since that's what it really does. The syntax
is:
typedef existing-type-description
alias-name
People often use typedef when data
types get slightly complicated, just to prevent extra keystrokes. Here is a
commonly-used typedef:
typedef unsigned long ulong;

Now if you say ulong the compiler
knows that you mean unsigned long. You might think that this could as
easily be accomplished using preprocessor substitution, but there are key
situations in which the compiler must be aware that you're treating a name
as if it were a type, so typedef is essential.
One place where typedef comes in
handy is for pointer types. As previously mentioned, if you
say:
int* x, y;

This actually produces an int*
which is x and an int (not an int*)which is
y. That is, the ‘*' binds to the right, not the left.
However, if you use a typedef:
typedef int* IntPtr;
IntPtr x, y;

Then both x and y are of
type int*.
You can argue that it's more
explicit and therefore more readable to avoid typedefs for primitive
types, and indeed programs rapidly become difficult to read when many
typedefs are used. However, typedefs become especially important
in C when used with
struct.
3-8-2 - 
Combining variables with struct
A
struct is a way to collect
a group of variables into a structure. Once you create a struct, then you
can make many instances of this “new” type of variable you've
invented.  For example:
//: C03:SimpleStruct.cpp
struct Structure1 {
  char c;
  int i;
  float f;
  double d;
};
 
int main() {
  struct Structure1 s1, s2;
  s1.c = 'a'; // Select an element using a '.'
  s1.i = 1;
  s1.f = 3.14;
  s1.d = 0.00093;
  s2.c = 'a';
  s2.i = 1;
  s2.f = 3.14;
  s2.d = 0.00093;
} ///:~

The struct declaration must end
with a semicolon. In main( ), two instances of Structure1 are
created: s1 and s2. Each of these has their own separate versions
of c, i, f, and d. So s1 and s2
represent clumps of completely independent variables. To select one of the
elements within s1 or s2, you use a ‘.', syntax
you've seen in the previous chapter when using C++ class objects
- since classes evolved from structs, this is where that
syntax arose from.
One thing you'll notice is the
awkwardness of the use of Structure1 (as it turns out, this is only
required by C, not C++). In C, you can't just say Structure1 when
you're defining variables, you must say struct Structure1. This is
where typedef becomes especially handy in C:
//: C03:SimpleStruct2.cpp
// Using typedef with struct
typedef struct {
  char c;
  int i;
  float f;
  double d;
} Structure2;
 
int main() {
  Structure2 s1, s2;
  s1.c = 'a';
  s1.i = 1;
  s1.f = 3.14;
  s1.d = 0.00093;
  s2.c = 'a';
  s2.i = 1;
  s2.f = 3.14;
  s2.d = 0.00093;
} ///:~

By using
typedef in this way, you can pretend (in C; try
removing the typedef for C++) that Structure2 is a built-in type,
like int or float, when you define s1 and s2 (but
notice it only has data - characteristics - and does not include
behavior, which is what we get with real objects in C++). You'll notice
that the struct identifier has been left off at the beginning, because
the goal is to create the typedef. However, there are times when you
might need to refer to the struct during its definition. In those cases,
you can actually repeat the name of the struct as the struct name
and as the typedef:
//: C03:SelfReferential.cpp
// Allowing a struct to refer to itself
 
typedef struct SelfReferential {
  int i;
  SelfReferential* sr; // Head spinning yet?
} SelfReferential;
 
int main() {
  SelfReferential sr1, sr2;
  sr1.sr = &sr2;
  sr2.sr = &sr1;
  sr1.i = 47;
  sr2.i = 1024;
} ///:~

If you look at this for awhile,
you'll see that sr1 and sr2 point to each other, as well as
each holding a piece of data. 
Actually, the struct name does not
have to be the same as the typedef name, but it is usually done this way
as it tends to keep things simpler.

Pointers and
structs
In the examples above, all the
structs are manipulated as objects. However, like any piece of storage,
you can take the address of a struct object (as
seen in SelfReferential.cpp above). To select the elements of a
particular struct object, you use a ‘.', as seen
above. However, if you have a pointer to a struct object, you must select
an element of that object using a different operator: the
‘->'. Here's an example:
//: C03:SimpleStruct3.cpp
// Using pointers to structs
typedef struct Structure3 {
  char c;
  int i;
  float f;
  double d;
} Structure3;
 
int main() {
  Structure3 s1, s2;
  Structure3* sp = &s1;
  sp->c = 'a';
  sp->i = 1;
  sp->f = 3.14;
  sp->d = 0.00093;
  sp = &s2; // Point to a different struct object
  sp->c = 'a';
  sp->i = 1;
  sp->f = 3.14;
  sp->d = 0.00093;
} ///:~

In main( ), the struct
pointer sp is initially pointing to s1, and the members of
s1 are initialized by selecting them with the ‘->'
(and you use this same operator in order to read those members). But then
sp is pointed to s2, and those variables are initialized the same
way. So you can see that another benefit of pointers is that they can be
dynamically redirected to point to different objects; this provides more
flexibility in your programming, as you will learn.
For now, that's all you need to
know about structs, butyou'll become much more comfortable
with them (and especially their more potent successors, classes) as the
book
progresses.
3-8-3 - 
Clarifying programs with enum
An enumerated data type is a way of
attaching names to numbers, thereby giving more meaning to anyone reading the
code. The enum keyword
(from C) automatically enumerates any list of identifiers you give it by
assigning them values of 0, 1, 2, etc. You can declare enum variables
(which are always represented as integral values). The declaration of an
enum looks similar to a struct declaration.
An enumerated data type is useful when
you want to keep track of some sort of feature:
//: C03:Enum.cpp
// Keeping track of shapes
 
enum ShapeType {
  circle,
  square,
  rectangle
};  // Must end with a semicolon like a struct
 
int main() {
  ShapeType shape = circle;
  // Activities here....
  // Now do something based on what the shape is:
  switch(shape) {
    case circle:  /* circle stuff */ break;
    case square:  /* square stuff */ break;
    case rectangle:  /* rectangle stuff */ break;
  }
} ///:~

shape is a variable of the
ShapeType enumerated data type, and its value is compared with the value
in the enumeration. Since shape is really just an int, however, it
can be any value an int can hold (including a negative number). You can
also compare an int variable with a value in the
enumeration.
You should be aware that the example
above of switching on type turns out to be a problematic way to program. C++ has
a much better way to code this sort of thing, the explanation of which must be
delayed until much later in the book.
If you don't like the way the
compiler assigns values, you can do it yourself, like this:
enum ShapeType { 
  circle = 10, square = 20, rectangle = 50
};

If you give values to some names and not
to others, the compiler will use the next integral value. For
example,
enum snap { crackle = 25, pop };

The compiler gives pop the value
26.
You can see how much more readable the
code is when you use enumerated data types. However, to some degree this is
still an attempt (in C) to accomplish the things that we can do with a
class in C++, so you'll see enum used less in
C++.

Type checking for enumerations
C's enumerations
are fairly primitive, simply
associating integral values with names, but they provide no type checking. In
C++, as you may have come to expect by now, the concept of type is fundamental,
and this is true with enumerations. When you create a named enumeration, you
effectively create a new type just as you do with a class: The name of your
enumeration becomes a reserved word for the duration of that translation unit.

In addition, there's stricter type
checking for enumerations in C++ than in C. You'll notice this in
particular if you have an instance of an enumeration
color called a. In C
you can say a++, but in C++ you can't. This is because incrementing
an enumeration is performing two type conversions, one of them legal in C++ and
one of them illegal. First, the value of the enumeration is implicitly cast from
a color to an int, then the value is incremented, then the
int is cast back into a color. In C++ this isn't allowed,
because color is a distinct type and not equivalent to an int.
This makes sense, because how do you know the increment of blue will even
be in the list of colors? If you want to increment a color, then it
should be a class (with an increment operation) and not an enum, because
the class can be made to be much safer. Any time you write code that assumes an
implicit conversion to an enum type, the compiler will flag this
inherently dangerous activity.
Unions (described next)
have similar additional type
checking in
C++.
3-8-4 - 
Saving memory with union 
Sometimes a program will handle different
types of data using the same variable. In this situation, you have two choices:
you can create a struct containing all the possible different types you
might need to store, or you can use a union. A
union piles all the data into a single space; it figures out the amount
of space necessary for the largest item you've put in the union,
and makes that the size of the union. Use a union to save
memory.
Anytime you place a value in a
union, the value always starts in the same place at the beginning of the
union, but only uses as much space as is necessary. Thus, you create a
“super-variable” capable of holding any of the union
variables. All the addresses of the union variables are the same (in a
class or struct, the addresses are different).
Here's a simple use of a
union. Try removing various elements and see what effect it has on the
size of the union. Notice that it makes no sense to declare more than one
instance of a single data type in a union (unless you're just doing
it to use a different name).
//: C03:Union.cpp
// The size and simple use of a union
#include <iostream>
using namespace std;
 
union Packed { // Declaration similar to a class
  char i;
  short j;
  int k;
  long l;
  float f;
  double d;  
  // The union will be the size of a 
  // double, since that's the largest element
};  // Semicolon ends a union, like a struct
 
int main() {
  cout << "sizeof(Packed) = " 
       << sizeof(Packed) << endl;
  Packed x;
  x.i = 'c';
  cout << x.i << endl;
  x.d = 3.14159;
  cout << x.d << endl;
} ///:~

The compiler performs the proper
assignment according to the union member you select.
Once you perform an assignment, the
compiler doesn't care what you do with the union. In the example above,
you could assign a floating-point value to x:
x.f = 2.222;

and then send it to the output as if it
were an int:
cout << x.i;

This would produce
garbage.
3-8-5 - 
Arrays
Arrays are a kind of
composite type because they allow you to clump a lot of
variables together, one right after the other, under a single identifier name.
If you say:
int a[10];

You create storage for 10 int
variables stacked on top of each other, but without unique identifier names for
each variable. Instead, they are all lumped under the name
a.
To access one of these array
elements, you use the same square-bracket syntax that you use to define an
array:
a[5] = 47;

However, you must remember that even
though the size of a is 10, you select array elements starting at
zero (this is sometimes called
zero indexing), so you can
select only the array elements 0-9, like this:
//: C03:Arrays.cpp
#include <iostream>
using namespace std;
 
int main() {
  int a[10];
  for(int i = 0; i < 10; i++) {
    a[i] = i * 10;
    cout << "a[" << i << "] = " << a[i] << endl;
  }
} ///:~

Array access is extremely fast. However,
if you index past the end of the array, there is no safety net -
you'll step on other variables. The other drawback is that you must define
the size of the array at compile time; if you want to change the size at runtime
you can't do it with the syntax above (C does have a way to create an
array dynamically, but it's significantly messier). The C++ vector,
introduced in the previous chapter, provides an array-like object that
automatically resizes itself, so it is usually a much better solution if your
array size cannot be known at compile time.
You can make an array of any type, even
of structs:
//: C03:StructArray.cpp
// An array of struct
 
typedef struct {
  int i, j, k;
} ThreeDpoint;
 
int main() {
  ThreeDpoint p[10];
  for(int i = 0; i < 10; i++) {
    p[i].i = i + 1;
    p[i].j = i + 2;
    p[i].k = i + 3;
  }
} ///:~

Notice how the struct identifier
i is independent of the for loop's
i.
To see that each element of an array is
contiguous with the next, you can print out the addresses like
this:
//: C03:ArrayAddresses.cpp
#include <iostream>
using namespace std;
 
int main() {
  int a[10];
  cout << "sizeof(int) = "<< sizeof(int) << endl;
  for(int i = 0; i < 10; i++)
    cout << "&a[" << i << "] = " 
         << (long)&a[i] << endl;
} ///:~

When you run this program, you'll
see that each element is one int size away from the previous one. That
is, they are stacked one on top of the other.

Pointers and arrays
The identifier of an array is unlike the
identifiers for ordinary variables. For one thing, an array identifier is not an
lvalue; you cannot assign to it. It's really just a hook into the
square-bracket syntax, and when you give the name of an array, without square
brackets, what you get is the starting address of the array:
//: C03:ArrayIdentifier.cpp
#include <iostream>
using namespace std;
 
int main() {
  int a[10];
  cout << "a = " << a << endl;
  cout << "&a[0] =" << &a[0] << endl;
} ///:~

When you run this program you'll
see that the two addresses (which will be printed in hexadecimal, since there is
no cast to long) are the same.
So one way to look at the array
identifier is as a read-only pointer to the beginning of an array. And although
we can't change the array identifier to point somewhere else, we
can create another pointer and use that to move around in the array. In
fact, the square-bracket syntax works with regular
pointers as well:
//: C03:PointersAndBrackets.cpp
int main() {
  int a[10];
  int* ip = a;
  for(int i = 0; i < 10; i++)
    ip[i] = i * 10;
} ///:~

The fact that naming an array produces
its starting address turns out to be quite important when you want to pass an
array to a function. If you declare an array as a function argument, what
you're really declaring is a pointer. So in the following example,
func1( ) and func2( ) effectively have the same argument
lists:
//: C03:ArrayArguments.cpp
#include <iostream>
#include <string>
using namespace std;
 
void func1(int a[], int size) {
  for(int i = 0; i < size; i++)
    a[i] = i * i - i;
}
 
void func2(int* a, int size) {
  for(int i = 0; i < size; i++)
    a[i] = i * i + i;
}
 
void print(int a[], string name, int size) {
  for(int i = 0; i < size; i++)
    cout << name << "[" << i << "] = " 
         << a[i] << endl;
}
 
int main() {
  int a[5], b[5];
  // Probably garbage values:
  print(a, "a", 5);
  print(b, "b", 5);
  // Initialize the arrays:
  func1(a, 5);
  func1(b, 5);
  print(a, "a", 5);
  print(b, "b", 5);
  // Notice the arrays are always modified:
  func2(a, 5);
  func2(b, 5);
  print(a, "a", 5);
  print(b, "b", 5);
} ///:~

Even though func1( ) and
func2( ) declare their arguments differently, the usage is the same
inside the function. There are some other issues that this example reveals:
arrays cannot be passed by
value(32), that is,
you never automatically get a local copy of the array
that you pass into a function. Thus, when you modify an array, you're
always modifying the outside object. This can be a bit confusing at first, if
you're expecting the pass-by-value provided with ordinary
arguments.
You'll notice that
print( ) uses the square-bracket syntax for array arguments. Even
though the pointer syntax and the square-bracket syntax are effectively the same
when passing arrays as arguments, the square-bracket syntax makes it clearer to
the reader that you mean for this argument to be an array.
Also note that the size argument
is passed in each case. Just passing the address of an array isn't enough
information; you must always be able to know how big the array is inside your
function, so you don't run off the end of that array.
Arrays can be of any type, including
arrays of pointers. In fact, when
you want to pass command-line arguments into your program, C and C++ have a
special argument list for main( ), which looks like
this:
int main(int argc, char* argv[]) { // ...

The first argument is the number of
elements in the array, which is the second argument. The second argument is
always an array of char*, because the arguments are passed from the
command line as character arrays (and remember, an array can be passed only as a
pointer). Each whitespace-delimited cluster of characters on the command line is
turned into a separate array argument. The following program prints out all its
command-line arguments by stepping through the array:
//: C03:CommandLineArgs.cpp
#include <iostream>
using namespace std;
 
int main(int argc, char* argv[]) {
  cout << "argc = " << argc << endl;
  for(int i = 0; i < argc; i++)
    cout << "argv[" << i << "] = " 
         << argv[i] << endl;
} ///:~

You'll notice that argv[0]
is the path and name of the program itself. This allows the program to discover
information about itself. It also adds one more to the array of program
arguments, so a common error when fetching
command-line arguments is to grab
argv[0] when you want argv[1].
You are not forced to use
argc and argv as
identifiers in main( ); those identifiers are only conventions (but
it will confuse people if you don't use them). Also, there is an alternate
way to declare argv:
int main(int argc, char** argv) { // ...

Both forms are equivalent, but I find the
version used in this book to be the most intuitive when reading the code, since
it says, directly, “This is an array of character
pointers.”
All you get from the command-line is
character arrays; if you want to treat an argument as some other type, you are
responsible for converting it inside your program. To facilitate the
conversion to numbers, there are
some helper functions in the Standard C library, declared in
<cstdlib>. The
simplest ones to use are atoi( ),
atol( ), and
atof( ) to convert an ASCII character array
to an int, long, and double floating-point value,
respectively. Here's an example using atoi( ) (the other two
functions are called the same way):
//: C03:ArgsToInts.cpp
// Converting command-line arguments to ints
#include <iostream>
#include <cstdlib>
using namespace std;
 
int main(int argc, char* argv[]) {
  for(int i = 1; i < argc; i++)
    cout << atoi(argv[i]) << endl;
} ///:~

In this program, you can put any number
of arguments on the command line. You'll notice that the for loop
starts at the value 1 to skip over the program name at argv[0].
Also, if you put a floating-point number containing a decimal point on the
command line, atoi( ) takes only the digits up to the decimal point.
If you put non-numbers on the command line, these come back from
atoi( ) as zero.

Exploring floating-point format
The printBinary( ) function
introduced earlier in this chapter is handy for delving into the internal
structure of various data types. The most interesting of these is the
floating-point format that allows C and C++ to store numbers representing very
large and very small values in a limited amount of space. Although the details
can't be completely exposed here, the bits inside of
floats and
doublesare divided into three regions: the
exponent, the mantissa, and the sign bit; thus it stores the values using
scientific notation. The following program allows you to play around by printing
out the binary patterns of various floating point numbers so you can deduce for
yourself the scheme used in your compiler's floating-point format (usually
this is the IEEE standard for floating point numbers, but
your compiler may not follow that):
//: C03:FloatingAsBinary.cpp
//{L} printBinary
//{T} 3.14159
#include "printBinary.h"
#include <cstdlib>
#include <iostream>
using namespace std;
 
int main(int argc, char* argv[]) {
  if(argc != 2) {
    cout << "Must provide a number" << endl;
    exit(1);
  }
  double d = atof(argv[1]);
  unsigned char* cp = 
    reinterpret_cast<unsigned char*>(&d);
  for(int i = sizeof(double)-1; i >= 0 ; i -= 2) {
    printBinary(cp[i-1]);
    printBinary(cp[i]);
  }
} ///:~

First, the program guarantees that
you've given it an argument by checking the value of argc, which is
two if there's a single argument (it's one if there are no
arguments, since the program name is always the first element of argv).
If this fails, a message is printed and the Standard C Library function
exit( ) is called to terminate the program.
The program grabs the argument from the
command line and converts the characters to a double using
atof( ). Then the double is treated as an
array of bytes by taking the address and casting it to an unsigned char*.
Each of these bytes is passed to printBinary( ) for
display.
This example has been set up to print the
bytes in an order such that the sign bit appears first - on my machine.
Yours may be different, so you might want to re-arrange the way things are
printed. You should also be aware that floating-point formats are not trivial to
understand; for example, the exponent and mantissa are not generally arranged on
byte boundaries, but instead a number of bits is reserved for each one and they
are packed into the memory as tightly as possible. To truly see what's
going on, you'd need to find out the size of each part of the number (sign
bits are always one bit, but exponents and mantissas are of differing sizes) and
print out the bits in each part separately.

Pointer arithmetic
If all you could do with a pointer that
points at an array is treat it as if it were an alias for that array, pointers
into arrays wouldn't be very interesting. However, pointers are more
flexible than this, since they can be modified to point somewhere else (but
remember, the array identifier cannot be modified to point somewhere
else).
Pointer arithmetic refers to the
application of some of the arithmetic operators to pointers. The reason pointer
arithmetic is a separate subject from ordinary arithmetic is that pointers must
conform to special constraints in order to make them behave properly. For
example, a common operator to use with pointers is
++, which “adds one to the pointer.”
What this actually means is that the pointer is changed to move to “the
next value,” whatever that means. Here's an
example:
//: C03:PointerIncrement.cpp
#include <iostream>
using namespace std;
 
int main() {
  int i[10];
  double d[10];
  int* ip = i;
  double* dp = d;
  cout << "ip = " << (long)ip << endl;
  ip++;
  cout << "ip = " << (long)ip << endl;
  cout << "dp = " << (long)dp << endl;
  dp++;
  cout << "dp = " << (long)dp << endl;
} ///:~

For one run on my machine, the output
is:
ip = 6684124
ip = 6684128
dp = 6684044
dp = 6684052

What's interesting here is that
even though the operation ++ appears to be the same operation for both
the int* and the double*, you can see that the pointer has been
changed only 4 bytes for the int* but 8 bytes for the double*. Not
coincidentally, these are the sizes of int and double on my
machine. And that's the trick of pointer arithmetic: the compiler figures
out the right amount to change the pointer so that it's pointing to the
next element in the array (pointer arithmetic is only meaningful within arrays).
This even works with arrays of structs:
//: C03:PointerIncrement2.cpp
#include <iostream>
using namespace std;
 
typedef struct {
  char c;
  short s;
  int i;
  long l;
  float f;
  double d;
  long double ld;
} Primitives;
 
int main() {
  Primitives p[10];
  Primitives* pp = p;
  cout << "sizeof(Primitives) = " 
       << sizeof(Primitives) << endl;
  cout << "pp = " << (long)pp << endl;
  pp++;
  cout << "pp = " << (long)pp << endl;
} ///:~

The output for one run on my machine
was:
sizeof(Primitives) = 40
pp = 6683764
pp = 6683804

So you can see the compiler also does the
right thing for pointers to structs (and classes and
unions).
Pointer arithmetic also works with the
operators --, +, and
-, but the latter two operators are limited: you
cannot add two pointers, and if you subtract pointers the result is the number
of elements between the two pointers. However, you can add or subtract an
integral value and a pointer. Here's an example demonstrating the use of
pointer arithmetic:
//: C03:PointerArithmetic.cpp
#include <iostream>
using namespace std;
 
#define P(EX) cout << #EX << ": " << EX << endl;
 
int main() {
  int a[10];
  for(int i = 0; i < 10; i++)
    a[i] = i; // Give it index values
  int* ip = a;
  P(*ip);
  P(*++ip);
  P(*(ip + 5));
  int* ip2 = ip + 5;
  P(*ip2);
  P(*(ip2 - 4));
  P(*--ip2);
  P(ip2 - ip); // Yields number of elements
} ///:~

It begins with another
macro, but this one uses a
preprocessor feature called
stringizing (implemented with the
‘#' sign before an expression) that takes any expression and
turns it into a character array. This is quite convenient, since it allows the
expression to be printed, followed by a colon, followed by the value of the
expression. In main( ) you can see the useful shorthand that is
produced.
Although pre- and postfix versions of
++ and -- are valid with pointers, only the prefix versions are
used in this example because they are applied before the pointers are
dereferenced in the expressions above, so they allow us to see the effects of
the operations. Note that only integral values are being added and subtracted;
if two pointers were combined this way the compiler would not allow it.

Here is the output of the program
above:
*ip: 0
*++ip: 1
*(ip + 5): 6
*ip2: 6
*(ip2 - 4): 2
*--ip2: 5

In all cases, the pointer arithmetic
results in the pointer being adjusted to point to the “right place,”
based on the size of the elements being pointed to.
If pointer arithmetic seems a bit
overwhelming at first, don't worry. Most of the time you'll only
need to create arrays and index into them with [ ], and the most
sophisticated pointer arithmetic you'll usually need is ++ and
--. Pointer arithmetic is generally reserved for more clever and complex
programs, and many of the containers in the Standard C++ library hide most of
these clever details so you don't have to worry about
them.
3-9 - 
Debugging hints
In an ideal environment, you have an
excellent debugger available that easily makes the behavior of your program
transparent so you can quickly discover errors. However, most debuggers have
blind spots, and these will require you to embed code snippets in your program
to help you understand what's going on. In addition, you may be developing
in an environment (such as an embedded system, which is where I spent my
formative years) that has no debugger available, and perhaps very limited
feedback (i.e. a one-line LED display). In these cases you become creative in
the ways you discover and display information about the execution of your
program. This section suggests some techniques for doing
this.
3-9-1 - 
Debugging flags
If you hard-wire debugging code into a
program, you can run into problems. You start to get too much information, which
makes the bugs difficult to isolate. When you think you've found the bug
you start tearing out debugging code, only to find you need to put it back in
again. You can solve these problems with two types of flags: preprocessor
debugging flags and runtime debugging flags.

Preprocessor debugging flags
By using the preprocessor to
#define one or more debugging flags (preferably in
a header file), you can test a flag using an
#ifdef statement and conditionally include
debugging code. When you think your debugging is finished, you can simply
#undef the flag(s) and the code will automatically
be removed (and you'll reduce the size and runtime overhead of your
executable file).
It is best to decide on names for
debugging flags before you begin building your project so the names will be
consistent. Preprocessor flags are traditionally distinguished from variables by
writing them in all upper case. A common flag name is simply DEBUG (but
be careful you don't use NDEBUG, which is reserved in C). The
sequence of statements might be:
#define DEBUG // Probably in a header file
//...
#ifdef DEBUG // Check to see if flag is defined
/* debugging code here */
#endif // DEBUG

Most C and C++ implementations will also
let you #define and #undef flags from the compiler command line,
so you can re-compile code and insert debugging information with a single
command (preferably via the makefile, a tool that will be described shortly).
Check your local documentation  for details.

Runtime debugging flags
In some situations it is more convenient
to turn debugging flags on and off during program execution, especially by
setting them when the program starts up using the command line. Large programs
are tedious to recompile just to insert debugging code.
To turn debugging code on and off
dynamically, create bool flags:
//: C03:DynamicDebugFlags.cpp
#include <iostream>
#include <string>
using namespace std;
// Debug flags aren't necessarily global:
bool debug = false;
 
int main(int argc, char* argv[]) {
  for(int i = 0; i < argc; i++)
    if(string(argv[i]) == "--debug=on")
      debug = true;
  bool go = true;
  while(go) {
    if(debug) {
      // Debugging code here
      cout << "Debugger is now on!" << endl;
    } else {
      cout << "Debugger is now off." << endl;
    }  
    cout << "Turn debugger [on/off/quit]: ";
    string reply;
    cin >> reply;
    if(reply == "on") debug = true; // Turn it on
    if(reply == "off") debug = false; // Off
    if(reply == "quit") break; // Out of 'while'
  }
} ///:~

This program continues to allow you to
turn the debugging flag on and off until you type “quit” to tell it
you want to exit. Notice it requires that full words are typed in, not just
letters (you can shorten it to letter if you wish). Also, a command-line
argument can optionally be used to turn debugging on at startup - this
argument can appear anyplace in the command line, since the startup code in
main( ) looks at all the arguments. The testing is quite simple
because of the expression:
string(argv[i])

This takes the argv[i] character
array and creates a string, which then can be easily compared to the
right-hand side of the ==. The program above searches for the entire
string --debug=on. You can also look for --debug= and then see
what's after that, to provide more options. Volume 2 (available from
www.BruceEckel.com) devotes a chapter to the Standard C++ string
class.
Although a debugging flag is one of the
relatively few areas where it makes a lot of sense to use a global variable,
there's nothing that says it must be that way. Notice that the variable is
in lower case letters to remind the reader it isn't a preprocessor
flag.
3-9-2 - 
Turning variables and expressions into
strings
When writing debugging code, it is
tedious to write print expressions consisting of a character array containing
the variable name, followed by the variable. Fortunately, Standard C includes
the
stringize
operator ‘#', which was used earlier in this chapter. When
you put a # before an argument in a preprocessor macro, the preprocessor
turns that argument into a character array. This, combined with the fact that
character arrays with no intervening punctuation are concatenated into a single
character array, allows you to make a very convenient macro for printing the
values of variables during debugging:
#define PR(x) cout << #x " = " << x << "\n";

If you print the variable a by
calling the macro PR(a), it will have the same effect as the
code:
cout << "a = " << a << "\n";

This same process works with entire
expressions. The following program uses a macro to create a shorthand that
prints the stringized expression and then evaluates the expression and prints
the result:
//: C03:StringizingExpressions.cpp
#include <iostream>
using namespace std;
 
#define P(A) cout << #A << ": " << (A) << endl;
 
int main() {
  int a = 1, b = 2, c = 3;
  P(a); P(b); P(c);
  P(a + b);
  P((c - a)/b);
} ///:~

You can see how a technique like this can
quickly become indispensable, especially if you have no debugger (or must use
multiple development environments). You can also insert an #ifdef to
cause P(A) to be defined as “nothing” when you want to strip
out
debugging.
3-9-3 - 
The C assert( ) macro
In the standard header file
<cassert>
you'll find assert( ), which is a convenient debugging
macro. When you use assert( ), you give it an argument that is an
expression you are “asserting to be true.” The preprocessor
generates code that will test the assertion. If the assertion isn't true,
the program will stop after issuing an error message telling you what the
assertion was and that it failed. Here's a trivial
example:
//: C03:Assert.cpp
// Use of the assert() debugging macro
#include <cassert>  // Contains the macro
using namespace std;
 
int main() {
  int i = 100;
  assert(i != 100); // Fails
} ///:~

The macro originated in Standard C, so
it's also available in the header file assert.h. 
When you are finished debugging, you can
remove the code generated by the macro by placing the line:
#define NDEBUG

in the program
before the inclusion of <cassert>, or by defining NDEBUG on the
compiler command line. NDEBUG is a flag used in <cassert> to change
the way code is generated by the macros.
Later in this book, you'll see some
more sophisticated alternatives to assert( ).
3-10 - 
Function addresses
Once a function is compiled and loaded
into the computer to be executed, it occupies a chunk of memory. That memory,
and thus the function, has an address.
C has never been a language to bar entry
where others fear to tread. You can use function addresses with pointers just as
you can use variable addresses. The declaration and use of function pointers
looks a bit opaque at first, but it follows the format of the rest of the
language.
3-10-1 - 
Defining a function pointer
To define a pointer to a function that
has no arguments and no return value, you say:
void (*funcPtr)();

When you are looking at a
complex definition like this, the
best way to attack it is to start in the middle and work your way out.
“Starting in the middle” means starting at the variable name, which
is funcPtr. “Working your way out” means looking to the right
for the nearest item (nothing in this case; the right parenthesis stops you
short), then looking to the left (a pointer denoted by the asterisk), then
looking to the right (an empty argument list indicating a function that takes no
arguments), then looking to the left (void, which indicates the function
has no return value). This right-left-right motion works with most
declarations.
To review, “start in the
middle” (“funcPtr is a ...”), go to the right (nothing
there - you're stopped by the right parenthesis), go to the left and find
the ‘*' (“... pointer to a ...”), go to the right
and find the empty argument list (“... function that takes no arguments
... ”), go to the left and find the void (“funcPtr is
a pointer to a function that takes no arguments and returns
void”).
You may wonder why *funcPtr
requires parentheses. If you didn't use them, the compiler would
see:
void *funcPtr();

You would be declaring a function (that
returns a void*)rather than defining a variable. You can think of
the compiler as going through the same process you do when it figures out what a
declaration or definition is supposed to be. It needs those parentheses to
“bump up against” so it goes back to the left and finds the
‘*', instead of continuing to the right and finding the empty
argument list.
3-10-2 - 
Complicated declarations & definitions
As an aside, once you figure out how the
C and C++ declaration syntax works you can create much more complicated items.
For instance:
//: C03:ComplicatedDefinitions.cpp
 
/* 1. */     void * (*(*fp1)(int))[10];
 
/* 2. */     float (*(*fp2)(int,int,float))(int);
 
/* 3. */     typedef double (*(*(*fp3)())[10])();
             fp3 a;
 
/* 4. */     int (*(*f4())[10])();
 
int main() {} ///:~

Walk through each one and use the
right-left guideline to figure it out. Number 1 says “fp1 is a
pointer to a function that takes an integer argument and returns a pointer to an
array of 10 void pointers.”
Number 2 says “fp2 is a
pointer to a function that takes three arguments (int, int, and
float) and returns a pointer to a function that takes an integer argument
and returns a float.”
If you are creating a lot of complicated
definitions, you might want to use a typedef. Number 3 shows how a
typedef saves typing the complicated description every time. It says
“An fp3 is a pointer to a function that takes no arguments and
returns a pointer to an array of 10 pointers to functions that take no arguments
and return doubles.” Then it says “a is one of these
fp3 types.” typedef is generally useful for building
complicated descriptions from simple ones.
Number 4 is a function declaration
instead of a variable definition. It says “f4 is a function that
returns a pointer to an array of 10 pointers to functions that return
integers.”
You will rarely if ever need such
complicated declarations and definitions as these. However, if you go through
the exercise of figuring them out you will not even be mildly disturbed with the
slightly complicated ones you may encounter in real life.
3-10-3 - 
Using a function pointer
Once you define a
pointer to a function, you must assign it to a function
address before you can use it. Just as the address of an array arr[10] is
produced by the array name without the brackets (arr), the address of a
function func() is produced by the function name without the argument
list (func). You can also use the more explicit syntax
&func(). To call the function, you dereference
the pointer in the same way that you declared it (remember that C and C++ always
try to make definitions look the same as the way they are used). The following
example shows how a pointer to a function is defined and used:
//: C03:PointerToFunction.cpp
// Defining and using a pointer to a function
#include <iostream>
using namespace std;
 
void func() {
  cout << "func() called..." << endl;
}
 
int main() {
  void (*fp)();  // Define a function pointer
  fp = func;  // Initialize it
  (*fp)();    // Dereferencing calls the function
  void (*fp2)() = func;  // Define and initialize
  (*fp2)();
} ///:~

After the pointer to function fp
is defined, it is assigned to the address of a function func() using
fp = func (notice the argument list is missing on the function name). The
second case shows simultaneous definition and initialization.
3-10-4 - 
Arrays of pointers to functions
One of the more interesting constructs
you can create is an array of pointers to functions. To select a function, you
just index into the array and dereference the pointer. This supports the concept
of table-driven code;
instead of using conditionals or case statements, you select functions to
execute based on a state variable (or a combination of state variables). This
kind of design can be useful if you often add or delete functions from the table
(or if you want to create or change such a table dynamically).
The following example creates some dummy
functions using a preprocessor macro, then creates an array of pointers to those
functions using automatic
aggregate initialization. As you
can see, it is easy to add or remove functions from the table (and thus,
functionality from the program) by changing a small amount of
code:
//: C03:FunctionTable.cpp
// Using an array of pointers to functions
#include <iostream>
using namespace std;
 
// A macro to define dummy functions:
#define DF(N) void N() { \
   cout << "function " #N " called..." << endl; }
 
DF(a); DF(b); DF(c); DF(d); DF(e); DF(f); DF(g);
 
void (*func_table[])() = { a, b, c, d, e, f, g };
 
int main() {
  while(1) {
    cout << "press a key from 'a' to 'g' "
      "or q to quit" << endl;
    char c, cr;
    cin.get(c); cin.get(cr); // second one for CR
    if ( c == 'q' ) 
      break; // ... out of while(1)
    if ( c < 'a' || c > 'g' ) 
      continue;
    (*func_table[c - 'a'])();
  }
} ///:~

At this point, you might be able to
imagine how this technique could be useful when creating some sort of
interpreter or list processing
program.
3-11 - 
Make: managing separate compilation
When using separate compilation
(breaking code into a number of
translation units), you need some way to automatically compile each file and to
tell the linker to build all the pieces - along with the appropriate
libraries and startup code - into an executable file. Most compilers allow
you to do this with a single command-line statement. For the GNU C++ compiler,
for example, you might say
g++ SourceFile1.cpp SourceFile2.cpp

The problem with this approach is that
the compiler will first compile each individual file, regardless of whether that
file needs to be rebuilt or not. With many files in a project, it can
become prohibitive to recompile everything if you've changed only a single
file.
The solution to this problem, developed
on Unix but available everywhere in some form, is a program called make.
The make utility manages all the individual files in a project by
following the instructions in a text file called a
makefile. When you edit some of the files in a
project and type make, the make program follows the guidelines in
the makefile to compare the dates on the source code files to the dates
on the corresponding target files, and if a source code file date is more recent
than its target file, make invokes the compiler on the source code file.
make only recompiles the source code files that were changed, and any
other source-code files that are affected by the modified files. By using
make, you don't have to re-compile all the files in your project
every time you make a change, nor do you have to check to see that everything
was built properly. The makefile contains all the commands to put your
project together. Learning to use make will save you a lot of time and
frustration. You'll also discover that make is the typical way that
you install new software on a Linux/Unix machine (although those
makefiles tend to be far more complicated than the ones presented in this
book, and you'll often automatically generate a makefile for your
particular machine as part of the installation process).
Because make is available in some
form for virtually all C++ compilers (and even if it isn't, you can use
freely-available makes with any compiler), it will be the tool used
throughout this book. However, compiler vendors have also created their own
project building tools. These tools ask you which files
are in your project and determine all the relationships themselves. These tools
use something similar to a makefile, generally called a project
file, but the programming environment maintains this file so you don't
have to worry about it. The configuration and use of project files varies from
one development environment to another, so you must find the appropriate
documentation on how to use them (although project file tools provided by
compiler vendors are usually so simple to use that you can learn them by playing
around - my favorite form of education). 
The makefiles used within this
book should work even if you are also using a specific vendor's
project-building
tool.
3-11-1 - 
Make activities
When you type make (or whatever
the name of your “make” program happens to be), the make
program looks in the current directory for a file named makefile, which
you've created if it's your project. This file lists
dependencies between source code
files. make looks at the dates on files. If a dependent file has an older
date than a file it depends on, make executes the
rule given after the dependency.
All comments in
makefiles start with a # and continue to the end of the
line.
As a simple example, the makefile
for a program called “hello” might contain:
# A comment
hello.exe: hello.cpp
        mycompiler hello.cpp

This says that hello.exe (the
target) depends on hello.cpp. When hello.cpp has a newer date than
hello.exe, make executes the “rule” mycompiler
hello.cpp. There may be multiple dependencies and multiple rules. Many
make programs require that all the rules begin with a tab. Other than
that, whitespace is generally ignored so you can format for
readability.
The rules are not restricted to being
calls to the compiler; you can call any program you want from within
make. By creating groups of interdependent dependency-rule sets, you can
modify your source code files, type make and be certain that all the
affected files will be rebuilt correctly.

Macros
A makefile may contain
macros (note that these are completely different
from C/C++ preprocessor macros). Macros allow convenient
string replacement. The makefiles in this book use a macro to invoke the
C++ compiler. For example,
CPP = mycompiler
hello.exe: hello.cpp
        $(CPP) hello.cpp

The = is used to identify CPP
as a macro, and the $ and parentheses expand the macro. In this case,
the expansion means that the macro call $(CPP) will be replaced with the
string mycompiler. With the macro above, if you want to change to a
different compiler called cpp,you just change the macro
to:
CPP = cpp

You can also add compiler flags, etc., to
the macro, or use separate macros to add compiler flags.

Suffix Rules
It becomes tedious to tell make
how to invoke the compiler for every single cpp file in your project,
when you know it's the same basic process each time. Since make is
designed to be a time-saver, it also has a way to abbreviate actions, as long as
they depend on file name suffixes. These abbreviations are called
suffix rules. A suffix rule
is the way to teach make how to convert a file with one type of extension
(.cpp, for example) into a file with another type of extension
(.obj or .exe). Once you teach make the rules for producing
one kind of file from another, all you have to do is tell make which
files depend on which other files. When make finds a file with a date
earlier than the file it depends on, it uses the rule to create a new file.

The suffix rule tells make that it
doesn't need explicit rules to build everything, but instead it can figure
out how to build things based on their file extension. In this case it says
“To build a file that ends in exe from one that ends in cpp,
invoke the following command.” Here's what it looks like for the
example above:
CPP = mycompiler
.SUFFIXES: .exe .cpp
.cpp.exe:
        $(CPP) $<

The
.SUFFIXES directive tells
make that it should watch out for any of the following file-name
extensions because they have special meaning for this particular makefile. Next
you see the suffix rule .cpp.exe, which says “Here's how to
convert any file with an extension of cpp to one with an extension of
exe” (when the cpp file is more recent than the exe
file). As before, the $(CPP) macro is used, but then you see something
new: $<. Because this begins with a
‘$' it's a macro, but this is one of
make's special built-in macros. The $< can be used only
in suffix rules, and it means “whatever prerequisite triggered the
rule” (sometimes called the dependent), which in this case
translates to “the cpp file that needs to be
compiled.”
Once the suffix rules have been set up,
you can simply say, for example, “make Union.exe,” and the
suffix rule will kick in, even though there's no mention of
“Union” anywhere in the makefile. 

Default targets
After the macros and suffix rules,
make looks for the first “target” in a file, and builds that,
unless you specify differently. So for the following
makefile:
CPP = mycompiler
.SUFFIXES: .exe .cpp
.cpp.exe:
        $(CPP) $<
target1.exe:
target2.exe:

If you just type
‘make', then target1.exe will be built (using the
default suffix rule) because that's the first target that make
encounters. To build target2.exe you'd have to explicitly say
‘make target2.exe'. This becomes tedious, so you normally
create a default “dummy” target that depends on all the rest of the
targets, like this:
CPP = mycompiler
.SUFFIXES: .exe .cpp
.cpp.exe:
        $(CPP) $<
all: target1.exe target2.exe

Here, ‘all' does not
exist and there's no file called ‘all', so every time
you type make, the program sees ‘all' as the first
target in the list (and thus the default target), then it sees that
‘all' does not exist so it had better make it by checking all
the dependencies. So it looks at target1.exe and (using the suffix rule)
sees whether (1) target1.exe exists and (2) whether target1.cpp is
more recent than target1.exe, and if so runs the suffix rule (if you
provide an explicit rule for a particular target, that rule is used instead).
Then it moves on to the next file in the default target list. Thus, by creating
a default target list (typically called ‘all' by convention,
but you can call it anything) you can cause every executable in your project to
be made simply by typing ‘make'. In addition, you can have
other non-default target lists that do other things - for example, you
could set it up so that typing ‘make debug' rebuilds all your
files with debugging wired
in.
3-11-2 - 
Makefiles in this book
Using the program ExtractCode.cpp
from Volume 2 of this book, all the code listings in this book are automatically
extracted from the ASCII text version of this book and placed in subdirectories
according to their chapters. In addition, ExtractCode.cpp creates several
makefiles in each subdirectory (with different names) so you can simply
move into that subdirectory and type make -f mycompiler.makefile
(substituting the name of your compiler for ‘mycompiler', the
‘-f' flag says “use what follows as the
makefile”). Finally, ExtractCode.cpp creates a
“master” makefile in the root directory where the
book's files have been expanded, and this makefile descends into
each subdirectory and calls make with the appropriate makefile.
This way you can compile all the code in the book by invoking a single
make command, and the process will stop whenever your compiler is unable
to handle a particular file (note that a Standard C++ conforming compiler should
be able to compile all the files in this book). Because implementations of
make vary from system to system, only the most basic, common features are
used in the generated makefiles.

3-11-3 - 
An example makefile
As mentioned, the code-extraction tool
ExtractCode.cpp automatically generates makefiles for each
chapter. Because of this, the makefiles for each chapter will not be
placed in the book (all the makefiles are packaged with the source code, which
you can download from www.BruceEckel.com).However, it's
useful to see an example of a makefile. What follows is a shortened
version of the one that was automatically generated for this chapter by the
book's extraction tool. You'll find more than one makefile in
each subdirectory (they have different names; you invoke a specific one with
‘make -f'). This one is for GNU C++:
CPP = g++
OFLAG = -o
.SUFFIXES : .o .cpp .c
.cpp.o :
  $(CPP) $(CPPFLAGS) -c $<
.c.o :
  $(CPP) $(CPPFLAGS) -c $<
 
all: \
  Return \
  Declare \
  Ifthen \
  Guess \
  Guess2
# Rest of the files for this chapter not shown
 
Return: Return.o 
  $(CPP) $(OFLAG)Return Return.o 
 
Declare: Declare.o 
  $(CPP) $(OFLAG)Declare Declare.o 
 
Ifthen: Ifthen.o 
  $(CPP) $(OFLAG)Ifthen Ifthen.o 
 
Guess: Guess.o 
  $(CPP) $(OFLAG)Guess Guess.o 
 
Guess2: Guess2.o 
  $(CPP) $(OFLAG)Guess2 Guess2.o 
 
Return.o: Return.cpp 
Declare.o: Declare.cpp 
Ifthen.o: Ifthen.cpp 
Guess.o: Guess.cpp 
Guess2.o: Guess2.cpp

The macro CPP is set to the name of the
compiler. To use a different compiler, you can either edit the makefile
or change the value of the macro on the command line, like
this:
make CPP=cpp

Note, however, that
ExtractCode.cpp has an automatic scheme to automatically build
makefiles for additional compilers.
The second macro OFLAG is the flag
that's used to indicate the name of the output file. Although many
compilers automatically assume the output file has the same base name as the
input file, others don't (such as Linux/Unix compilers, which default to
creating a file called a.out).
You can see that there are two suffix
rules here, one for cpp files and one for .c files (in case any C
source code needs to be compiled). The default target is all, and each
line for this target is “continued” by using the backslash, up until
Guess2, which is the last one in the list and thus has no backslash.
There are many more files in this chapter, but only these are shown here for the
sake of brevity.
The suffix rules take care of creating
object files (with a .o extension) from cpp files, but in general
you need to explicitly state rules for creating the executable, because normally
an executable is created by linking many different object files and make
cannot guess what those are. Also, in this case (Linux/Unix) there is no
standard extension for executables so a suffix rule won't work for these
simple situations. Thus, you see all the rules for building the final
executables explicitly stated.
This makefile takes the absolute
safest route of using as few make features as possible; it only uses the
basic make concepts of targets and dependencies, as well as macros. This
way it is virtually assured of working with as many make programs as
possible. It tends to produce a larger makefile, but that's not so
bad since it's automatically generated by
ExtractCode.cpp.
There are lots of other make
features that this book will not use, as well as newer and cleverer versions and
variations of make with advanced shortcuts that can save a lot of time.
Your local documentation may describe the further features of your particular
make, and you can learn more about make from Managing Projects
with Make by Oram and Talbott (O'Reilly, 1993). Also, if your compiler
vendor does not supply a make or it uses a non-standard make, you
can find GNU make for virtually any platform in existence by searching the
Internet for GNU archives (of which there are
many).
3-12 - 
Summary
This chapter was a fairly intense tour
through all the fundamental features of C++ syntax, most of which are inherited
from and in common with C (and result in C++'s vaunted backwards
compatibility with C). Although some C++ features were introduced here, this
tour is primarily intended for people who are conversant in programming, and
simply need to be given an introduction to the syntax basics of C and C++. If
you're already a C programmer, you may have even seen one or two things
about C here that were unfamiliar, aside from the C++ features that were most
likely new to you. However, if this chapter has still seemed a bit overwhelming,
you should go through the CD ROM course Thinking in C: Foundations for C++
and Java (which contains lectures, exercises, and guided solutions), which
is bound into this book, and also available at
www.BruceEckel.com.
3-13 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
www.BruceEckel.com.
		Create a header file (with
an extension of ‘.h'). In this file, declare a group of
functions by varying the argument lists and return values from among the
following: void, char, int, and float. Now create a
.cpp file that includes your header file and creates definitions for all
of these functions. Each definition should simply print out the function name,
argument list, and return type so you know it's been called. Create a
second .cpp file that includes your header file and defines int
main( ), containing calls to all of your functions. Compile and run
your program.
		Write
a program that uses two nested for loops and the modulus operator
(%) to detect and print prime numbers (integral numbers that are not
evenly divisible by any other numbers except for themselves and
1).
		Write a program
that uses a while loop to read words from standard input (cin)
into a string. This is an “infinite” while loop, which
you break out of (and exit the program) using a break statement. For each
word that is read, evaluate itby first using a sequence of if
statements to “map” an integral value to the word, and then use a
switch statement that uses that integral value as its selector (this
sequence of events is not meant to be good programming style; it's just
supposed to give you exercise with control flow). Inside each case,print something meaningful. You must decide what the
“interesting” words are and what the meaning is. You must also
decide what word will signal the end of the program. Test the program by
redirecting a file into the program's standard input (if you want to save
typing, this file can be your program's source
file).
		Modify
Menu.cpp to use switch statements instead of if
statements.
		Write a
program that evaluates the two expressions in the section labeled
“precedence.”
		Modify
YourPets2.cpp so that it uses various different data types (char,
int, float, double, and their variants). Run the program
and create a map of the resulting memory layout. If you have access to more than
one kind of machine, operating system, or compiler, try this experiment with as
many variations as you can
manage.
		Create two
functions, one that takes a string* and one that takes a
string&. Each of these functions should modify the outside string
object in its own unique way. In main( ), create and initialize
a string object, print it, then pass it to each of the two functions,
printing the
results.
		Write a
program that uses all the trigraphs to see if your compiler supports
them.
		Compile and
run Static.cpp. Remove the static keyword from the code, compile
and run it again, and explain what
happens.
		Try to
compile and link FileStatic.cpp with FileStatic2.cpp. What does
the resulting error message
mean?
		Modify
Boolean.cpp so that it works with double values instead of
ints.
		Modify
Boolean.cpp and Bitwise.cpp so they use the explicit operators (if
your compiler is conformant to the C++ Standard it will support
these).
		Modify
Bitwise.cpp to use the functions from Rotation.cpp. Make sure you
display the results in such a way that it's clear what's happening
during
rotations.
		Modify
Ifthen.cpp to use the ternary if-else operator
(?:).
		Create
a struct that holds two string objects and one int. Use a
typedef for the struct name. Create an instance of the
struct,initialize all three values in your instance, and print
them out. Take the address of your instance and assign it to a pointer to your
struct type. Change the three values in your instance and print them out,
all using the
pointer.
		Create a
program that uses an enumeration of colors. Create a variable of this
enum type and print out all the numbers that correspond with the color
names, using a for
loop.
		Experiment
with Union.cpp by removing various union elements to see the
effects on the size of the resulting union. Try assigning to one element
(thus one type) of the union and printing out a via a different element
(thus a different type) to see what
happens.
		Create a
program that defines two int arrays, one right after the other. Index off
the end of the first array into the second, and make an assignment. Print out
the second array to see the changes cause by this. Now try defining a
char variable between the first array definition and the second, and
repeat the experiment. You may want to create an array printing function to
simplify your
coding.
		Modify
ArrayAddresses.cpp to work with the data types char, long
int, float, and
double.
		Apply
the technique in ArrayAddresses.cpp to print out the size of the
struct and the addresses of the array elements in
StructArray.cpp.
		Create
an array of string objects and assign a string to each element. Print out
the array using a for
loop.
		Create two new
programs starting from ArgsToInts.cpp so they use atol( ) and
atof( ),
respectively.
		Modify
PointerIncrement2.cpp so it uses a union instead of a
struct.
		Modify
PointerArithmetic.cpp to work with long and long
double.
		Define a
float variable. Take its address, cast that address to an unsigned
char, and assign it to an unsigned char pointer. Using this pointer
and [ ], index into the float variable and use the
printBinary( ) function defined in this chapter to print out a map
of the float (go from 0 to sizeof(float)). Change the value of the
float and see if you can figure out what's going on (the
float contains encoded
data).
		Define an
array of int. Take the starting address of that array and use
static_cast to convert it into an void*. Write a function that
takes a void*, a number (indicating a number of bytes), and a value
(indicating the value to which each byte should be set) as arguments. The
function should set each byte in the specified range to the specified value. Try
out the function on your array of
int.
		Create a
const array of double and a volatile array of
double. Index through each array and use const_cast to cast each
element to non-const and non-volatile, respectively, and assign a
value to each
element.
		Create a
function that takes a pointer to an array of double and a value
indicating the size of that array. The function should print each element in the
array. Now create an array of double and initialize each element to zero,
then use your function to print the array. Next use reinterpret_cast to
cast the starting address of your array to an unsigned char*, and set
each byte of the array to 1 (hint: you'll need to use sizeof to
calculate the number of bytes in a double). Now use your array-printing
function to print the results. Why do you think each element was not set to the
value
1.0?
		(Challenging)
Modify FloatingAsBinary.cpp so that it prints out each part of the
double as a separate group of bits. You'll have to replace the
calls to printBinary( ) with your own specialized code (which you
can derive from printBinary( )) inorder to do this, and
you'll also have to look up and understand the floating-point format along
with the byte ordering for your compiler (this is the challenging
part).
		Create a
makefile that not only compiles YourPets1.cpp and YourPets2.cpp
(for your particular compiler) but also executes both programs as part of the
default target behavior. Make sure you use suffix
rules.
		Modify
StringizingExpressions.cpp so that P(A) is conditionally
#ifdefed to allow the debugging code to be automatically stripped out by
setting a command-line flag. You will need to consult your compiler's
documentation to see how to define and undefine preprocessor values on the
compiler command
line.
		Define a
function that takes a double argument and returns an int. Create
and initialize a pointer to this function, and call the function through your
pointer.
		Declare a
pointer to a function taking an int argument and returning a pointer to a
function that takes a char argument and returns a
float.
		Modify
FunctionTable.cpp so that each function returns a string (instead
of printing out a message) and so that this value is printed inside of
main( ).
		Create
a makefile for one of the previous exercises (of your choice) that allows
you to type make for a production build of the program, and make
debug for a build of the program including debugging
information.


4 - Data Abstraction
C++ is a productivity enhancement
tool. Why else 
would you make the effort
(and it is an effort, 
regardless of how
easy we attempt to make the transition)
to switch from some language that you
already know and are productive with to a new language in which you're
going to be less productive for a while, until you get the hang of it?
It's because you've become convinced that you're going to get
big gains by using this new tool.
Productivity, in computer programming
terms, means that fewer people can make much more complex and impressive
programs in less time. There are certainly other issues when it comes to
choosing a language, such as efficiency (does the nature of the language cause
slowdown and code bloat?), safety (does the language help you ensure that your
program will always do what you plan, and handle errors gracefully?), and
maintenance (does the language help you create code that is easy to understand,
modify, and extend?). These are certainly important factors that will be
examined in this book.
But raw productivity means a program that
formerly took three of you a week to write now takes one of you a day or two.
This touches several levels of economics. You're happy because you get the
rush of power that comes from building something, your client (or boss) is happy
because products are produced faster and with fewer people, and the customers
are happy because they get products more cheaply. The only way to get massive
increases in productivity is to leverage off other people's code. That is,
to use libraries.
A library is
simply a bunch of code that someone else has written and packaged together.
Often, the most minimal package is a file with an extension like lib and
one or more header files to tell your compiler what's in the library. The
linker knows how to search through the library file and extract the appropriate
compiled code. But that's only one way to deliver a library. On platforms
that span many architectures, such as Linux/Unix, often the only sensible way to
deliver a library is with source code, so it can be reconfigured and recompiled
on the new target.
Thus, libraries are probably the most
important way to improve productivity, and one of the primary design goals of
C++ is to make library use easier. This implies that there's something
hard about using libraries in C. Understanding this factor will give you a first
insight into the design of C++, and thus insight into how to use
it.
4-1 - 
A tiny C-like library
A library usually starts out as a
collection of functions, but if you have used third-party
C libraries you know there's
usually more to it than that because there's more to life than
behavior, actions, and functions. There are also
characteristics (blue, pounds, texture, luminance), which
are represented by data. And when you start to deal with a set of
characteristics in C, it is very convenient to clump them together into a
struct, especially if you want to represent more
than one similar thing in your problem space. Then you can make a variable of
this struct for each thing.
Thus, most C libraries have a set of
structs and a set of functions that act on those structs. As an
example of what such a system looks like, consider a programming tool that acts
like an array, but whose size can be established at runtime, when it is created.
I'll call it a CStash. Although it's written in C++, it has
the style of what you'd write in C:

//: C04:CLib.h
// Header file for a C-like library
// An array-like entity created at runtime
 
typedef struct CStashTag {
  int size;      // Size of each space
  int quantity;  // Number of storage spaces
  int next;      // Next empty space
  // Dynamically allocated array of bytes:
  unsigned char* storage;
} CStash;
 
void initialize(CStash* s, int size);
void cleanup(CStash* s);
int add(CStash* s, const void* element);
void* fetch(CStash* s, int index);
int count(CStash* s);
void inflate(CStash* s, int increase);
///:~

A tag name like CStashTag is
generally used for a struct in case you need to
reference the struct inside itself. For example, when creating a
linked list (each element in your list contains a pointer to the next
element), you need a pointer to the next struct variable, so you need a
way to identify the type of that pointer within the struct body. Also,
you'll almost universally see the typedef as shown
above for every struct in a C library. This is done so you can treat the
struct as if it were a new type and define variables of that
struct like this:
CStash A, B, C;

The storage pointer is an
unsigned char*. An unsigned char is the smallest piece of storage
a C compiler supports, although on
some machines it can be the same size as the largest. It's implementation
dependent, but is often one byte long. You might think that because the
CStash is designed to hold any type of variable, a
void* would be more
appropriate here. However, the purpose is not to treat this storage as a block
of some unknown type, but rather as a block of contiguous
bytes.
The source code for the implementation
file (which you may not get if you buy a library commercially - you might
get only a compiled obj or lib or dll, etc.) looks like
this:
//: C04:CLib.cpp {O}
// Implementation of example C-like library
// Declare structure and functions:
#include "CLib.h"
#include <iostream>
#include <cassert> 
using namespace std;
// Quantity of elements to add
// when increasing storage:
const int increment = 100;
 
void initialize(CStash* s, int sz) {
  s->size = sz;
  s->quantity = 0;
  s->storage = 0;
  s->next = 0;
}
 
int add(CStash* s, const void* element) {
  if(s->next >= s->quantity) //Enough space left?
    inflate(s, increment);
  // Copy element into storage,
  // starting at next empty space:
  int startBytes = s->next * s->size;
  unsigned char* e = (unsigned char*)element;
  for(int i = 0; i < s->size; i++)
    s->storage[startBytes + i] = e[i];
  s->next++;
  return(s->next - 1); // Index number
}
 
void* fetch(CStash* s, int index) {
  // Check index boundaries:
  assert(0 <= index);
  if(index >= s->next)
    return 0; // To indicate the end
  // Produce pointer to desired element:
  return &(s->storage[index * s->size]);
}
 
int count(CStash* s) {
  return s->next;  // Elements in CStash
}
 
void inflate(CStash* s, int increase) {
  assert(increase > 0);
  int newQuantity = s->quantity + increase;
  int newBytes = newQuantity * s->size;
  int oldBytes = s->quantity * s->size;
  unsigned char* b = new unsigned char[newBytes];
  for(int i = 0; i < oldBytes; i++)
    b[i] = s->storage[i]; // Copy old to new
  delete [](s->storage); // Old storage
  s->storage = b; // Point to new memory
  s->quantity = newQuantity;
}
 
void cleanup(CStash* s) {
  if(s->storage != 0) {
   cout << "freeing storage" << endl;
   delete []s->storage;
  }
} ///:~

initialize( ) performs the
necessary setup for struct CStash by setting the internal variables to
appropriate values. Initially, the storage pointer is set to zero -
no initial storage is allocated.
The add( ) function inserts
an element into the CStash at the next available location. First, it
checks to see if there is any available space left. If not, it expands the
storage using the inflate( ) function, described
later.
Because the compiler doesn't know
the specific type of the variable being stored (all the function gets is a
void*), you can't just do an assignment, which would certainly be
the convenient thing. Instead, you must copy the variable byte-by-byte. The most
straightforward way to perform the copying is with array indexing. Typically,
there are already data bytes in storage, and this is indicated by the
value of next. To start with the right byte offset, next is
multiplied by the size of each element (in bytes) to produce startBytes.
Then the argument element is cast to an unsigned char* so that it
can be addressed byte-by-byte and copied into the available storage
space. next is incremented so that it indicates the next available piece
of storage, and the “index number” where the value was stored so
that value can be retrieved using this index number with
fetch( ).
fetch( ) checks to see that
the index isn't out of bounds and then returns the address of the desired
variable, calculated using the index argument. Since index
indicates the number of elements to offset into the CStash, it must
be multiplied by the number of bytes occupied by each piece to produce the
numerical offset in bytes. When this offset is used to index into storage
using array indexing, you don't get the address, but instead the byte
at the address. To produce the address, you must use the address-of operator
&. 
count( ) may look a bit
strange at first to a seasoned C programmer. It seems like a lot of trouble to
go through to do something that would probably be a lot easier to do by hand. If
you have a struct CStash called intStash, for example, it would
seem much more straightforward to find out how many elements it has by saying
intStash.next instead of making a function call (which has overhead),
such as count(&intStash). However, if you wanted to change the
internal representation of CStash and thus the way the count was
calculated, the function call interface allows the necessary flexibility. But
alas, most programmers won't bother to find out about your
“better” design for the library. They'll look at the
struct and grab the next value directly, and possibly even change
next without your permission. If only there were some way for the library
designer to have better control over things like this! (Yes, that's
foreshadowing.)
4-1-1 - 
Dynamic storage
allocation
You never know the maximum amount of
storage you might need for a CStash, so the memory pointed to by
storage is allocated from the heap. The
heap is a big block of memory used for allocating smaller
pieces at runtime. You use the heap when you don't know the size of the
memory you'll need while you're writing a program. That is, only at
runtime will you find out that you need space to hold 200 Airplane
variables instead of 20. In Standard C, dynamic-memory allocation functions
include malloc( ),
calloc( ),
realloc( ), and
free( ). Instead of library calls, however,
C++ has a more sophisticated (albeit simpler to use) approach to dynamic memory
that is integrated into the language via the keywords
new and
delete.
The inflate( ) function uses
new to get a bigger chunk of space for the CStash. In this
situation, we will only expand memory and not shrink it, and the
assert( ) will guarantee that a negative
number is not passed to inflate( ) as the increase value. The
new number of elements that can be held (after inflate( ) completes)
is calculated as newQuantity, and this is multiplied by the number of
bytes per element to produce newBytes, which will be the number of bytes
in the allocation. So that we know how many bytes to copy over from the old
location, oldBytes is calculated using the old
quantity.
The actual storage allocation occurs in
the new-expression, which is the expression
involving the new keyword:
new unsigned char[newBytes];

The general form of the new-expression
is:
new Type;
in which Type describes the type
of variable you want allocated on the heap. In this case, we want an array of
unsigned char that is newBytes long, so that is what appears as
the Type. You can also allocate something as simple as an int by
saying:
new int;

and although this is rarely done, you can
see that the form is consistent.
A new-expression returns a pointer
to an object of the exact type that you asked for. So if you say new
Type, you get back a pointer to a Type.If you say new
int, you get back a pointer to an int. If you want a newunsigned char array, you get back a pointer to the first element of that
array. The compiler will ensure that you assign the return value of the
new-expression to a pointer of the correct type.
Of course, any time you request memory
it's possible for the request to fail, if there is no more memory. As you
will learn, C++ has mechanisms that come into play if the memory-allocation
operation is unsuccessful.
Once the new storage is allocated, the
data in the old storage must be copied to the new storage; this is again
accomplished with array indexing, copying one byte at a time in a loop. After
the data is copied, the old storage must be released so that it can be used by
other parts of the program if they need new storage. The delete keyword
is the complement of new, and must be applied to release any storage that
is allocated with new (if you forget to use delete, that storage
remains unavailable, and if this so-called
memory leak happens enough,
you'll run out of memory). In addition, there's a special syntax
when you're deleting an array. It's as if you must remind the
compiler that this pointer is not just pointing to one object, but to an array
of objects: you put a set of empty square brackets in front of the pointer to be
deleted:
delete []myArray;

Once the old storage has been deleted,
the pointer to the new storage can be assigned to the storage pointer,
the quantity is adjusted, and inflate( ) has completed its
job.
Note that the heap manager is fairly
primitive. It gives you chunks of memory and takes them back when you
delete them. There's no inherent facility for
heap compaction, which compresses the heap to
provide bigger free chunks. If a program allocates and frees heap storage for a
while, you can end up with a
fragmented heap that has
lots of memory free, but without any pieces that are big enough to allocate the
size you're looking for at the moment. A heap
compactor complicates a program because it moves memory chunks around, so your
pointers won't retain their proper values. Some operating environments
have heap compaction built in, but they require you to use special memory
handles (which can be temporarily converted to pointers, after locking
the memory so the heap compactor can't move it) instead of pointers. You
can also build your own heap-compaction scheme, but this is not a task to be
undertaken lightly.
When you create a
variable on the stack at
compile-time, the storage for that variable is automatically created and freed
by the compiler. The compiler knows exactly how much storage is needed, and it
knows the lifetime of the variables because of scoping. With dynamic memory
allocation, however, the compiler doesn't know how much storage
you're going to need, and it doesn't know the lifetime of
that storage. That is, the storage doesn't get cleaned up automatically.
Therefore, you're responsible for releasing the storage using
delete, which tells the heap manager that storage can be used by the next
call to new. The logical place for this to happen in the library is in
the cleanup( ) function because that is where all the closing-up
housekeeping is done.
To test the library, two CStashes
are created. The first holds ints and the second holds arrays of 80
chars:
//: C04:CLibTest.cpp
//{L} CLib
// Test the C-like library
#include "CLib.h"
#include <fstream>
#include <iostream>
#include <string>
#include <cassert>
using namespace std;
 
int main() {
  // Define variables at the beginning
  // of the block, as in C:
  CStash intStash, stringStash;
  int i;
  char* cp;
  ifstream in;
  string line;
  const int bufsize = 80;
  // Now remember to initialize the variables:
  initialize(&intStash, sizeof(int));
  for(i = 0; i < 100; i++)
    add(&intStash, &i);
  for(i = 0; i < count(&intStash); i++)
    cout << "fetch(&intStash, " << i << ") = "
         << *(int*)fetch(&intStash, i)
         << endl;
  // Holds 80-character strings:
  initialize(&stringStash, sizeof(char)*bufsize);
  in.open("CLibTest.cpp");
  assert(in);
  while(getline(in, line))
    add(&stringStash, line.c_str());
  i = 0;
  while((cp = (char*)fetch(&stringStash,i++))!=0)
    cout << "fetch(&stringStash, " << i << ") = "
         << cp << endl;
  cleanup(&intStash);
  cleanup(&stringStash);
} ///:~

Following the form required by C, all the
variables are created at the beginning of the scope of main( ). Of
course, you must remember to initialize the CStash variables later in the
block by calling initialize( ). One of the problems with C libraries
is that you must carefully convey to the user the importance of the
initialization and cleanup
functions. If these functions aren't called, there
will be a lot of trouble. Unfortunately, the user doesn't always wonder if
initialization and cleanup are mandatory. They know what they want to
accomplish, and they're not as concerned about you jumping up and down
saying, “Hey, wait, you have to do this first!” Some users
have even been known to initialize the elements of a structure themselves.
There's certainly no mechanism in C to prevent it (more
foreshadowing).
The intStash is filled up with
integers, and the stringStash is filled with character arrays. These
character arrays are produced by opening the source code file,
CLibTest.cpp, and reading the lines from it into a
string called line, and then producing a
pointer to the character representation of line using the member function
c_str( ).
After each Stash is loaded, it is
displayed. The intStash is printed using a for loop, which uses
count( ) to establish its limit. The stringStash is printed
with a while, which breaks out when fetch( ) returns zero to
indicate it is out of bounds.
You'll also notice an additional
cast in 
cp = (char*)fetch(&stringStash,i++)

This is due to the
stricter type checking in C++,
which does not allow you to simply assign a void* to any other type (C
allows this).
4-1-2 - 
Bad guesses
There is one more important issue you
should understand before we look at the general problems in creating a C
library. Note that the CLib.h header file must be included in any
file that refers to CStash because the compiler can't even guess at
what that structure looks like. However, it can guess at what a function
looks like; this sounds like a feature but it turns out to be a major
C pitfall.
Although you should always declare
functions by including a header file,
function declarations
aren't essential in C. It's possible in C (but not in C++) to
call a function that you haven't declared. A good compiler will warn you
that you probably ought to declare a function first, but it isn't enforced
by the C language standard. This is a dangerous practice, because the C compiler
can assume that a function that you call with an int argument has an
argument list containing int, even if it may actually contain a
float.This can produce bugs that are very difficult to find, as
you will see.
Each separate C implementation file (with
an extension of .c)is a
translation unit. That
is, the compiler is run separately on each translation unit, and when it is
running it is aware of only that unit. Thus, any information you provide by
including header files is quite important because it determines the
compiler's understanding of the rest of your program. Declarations in
header files are particularly important, because everywhere the header is
included, the compiler will know exactly what to do. If, for example, you have a
declaration in a header file that says void func(float), the compiler
knows that if you call that function with an integer argument, it should
convert
the int to a float as it passes the argument (this is called
promotion). Without the declaration, the C compiler would simply assume
that a function func(int) existed, it wouldn't do the promotion,
and the wrong data would quietly be passed into
func( ).
For each translation unit, the compiler
creates an object file, with an extension of .o
or .obj or something similar. These object files, along with the
necessary start-up code, must be collected by the linker
into the executable program. During linking, all the
external references must be resolved. For example, in CLibTest.cpp,
functions such as initialize( ) and fetch( ) are
declared (that is, the compiler is told what they look like) and used, but not
defined. They are defined elsewhere, in CLib.cpp. Thus, the calls in
CLib.cpp are external references. The linker must, when it puts all the
object files together, take the unresolved external references
and find the addresses they
actually refer to. Those addresses are put into the executable program to
replace the external references.
It's important to realize that in
C, the external references that the linker searches for are simply function
names, generally with an underscore in front of them. So all the linker has to
do is match up the function name where it is called and the function body in the
object file, and it's done. If you accidentally made a call that the
compiler interpreted as func(int) and there's a function body for
func(float) in some other object file, the linker will see _func
in one place and _func in another, and it will think everything's
OK. The func( ) at the calling location will push an int onto
the stack, and the func( ) function body will expect a float
to be on the stack. If the function only reads the value and doesn't write
to it, it won't blow up the stack. In fact, the float value it
reads off the stack might even make some kind of sense. That's worse
because it's harder to find the
bug.
4-2 - 
What's wrong?
We are remarkably adaptable, even in
situations in which perhaps we shouldn't adapt. The style of the
CStash library has been a staple for C programmers, but if you look at it
for a while, you might notice that it's rather . . . awkward. When you use
it, you have to pass the address of the structure to every single function in
the library. When reading the code, the mechanism of the library gets mixed with
the meaning of the function calls, which is confusing when you're trying
to understand what's going on.
One of the biggest obstacles, however, to
using libraries in C is the problem of name
clashes. C has a single
name space for functions; that is, when the linker looks
for a function name, it looks in a single master list. In addition, when the
compiler is working on a translation unit, it can work only with a single
function with a given name.
Now suppose you decide to buy two
libraries from two different vendors, and each library has a structure that must
be initialized and cleaned up. Both vendors decided that
initialize( ) and cleanup( ) are good names. If you
include both their header files in a single translation unit, what does the C
compiler do? Fortunately, C gives you an error, telling you there's a type
mismatch in the two different argument lists of the declared functions. But even
if you don't include them in the same translation unit, the linker will
still have problems. A good linker will detect that there's a name clash,
but some linkers take the first function name they find, by searching through
the list of object files in the order you give them in the link list. (This can
even be thought of as a feature because it allows you to replace a library
function with your own version.)
In either event, you can't use two
C libraries that contain a function with the identical name. To solve this
problem, C library vendors will often prepend a sequence of unique characters to
the beginning of all their function names. So initialize( ) and
cleanup( ) might become CStash_initialize( ) and
CStash_cleanup( ). This is a logical thing to do because it
“decorates” the name of the struct the function works on with
the name of the
function.
Now it's time to take the first
step toward creating classes in C++. Variable names inside a
struct do not clash with
global variable names. So why not take advantage of this for function names,
when those functions operate on a particular struct? That is, why not
make functions members of
structs?
4-3 - 
The basic object
Step one is exactly that. C++ functions
can be placed inside structs as
“member functions.”
Here's what it looks like after
converting
the C version of CStash to the C++ Stash:

//: C04:CppLib.h
// C-like library converted to C++
 
struct Stash {
  int size;      // Size of each space
  int quantity;  // Number of storage spaces
  int next;      // Next empty space
   // Dynamically allocated array of bytes:
  unsigned char* storage;
  // Functions!
  void initialize(int size);
  void cleanup();
  int add(const void* element);
  void* fetch(int index);
  int count();
  void inflate(int increase);
}; ///:~

First, notice there is no
typedef. Instead of
requiring you to create a typedef, the C++ compiler turns the name of the
structure into a new type name for the program (just as int, char,
float and double are type names).
All the data members are exactly the same
as before, but now the functions are inside the body of the struct. In
addition, notice that the first argument from the C version of the library has
been removed. In C++, instead of forcing you to pass the
address of the structure as the first argument to all the functions that operate
on that structure, the compiler secretly does this for you. Now the only
arguments for the functions are concerned with what the function does,
not the mechanism of the function's operation.
It's important to realize that the
function code is effectively the same as it was with the C version of the
library. The number of arguments is the same (even though you don't see
the structure address being passed in, it's still there), and
there's only one function body for each function. That is, just because
you say
Stash A, B, C;

doesn't mean you get a different
add( ) function for each variable.
So the code that's generated is
almost identical to what you would have written for the C version of the
library. Interestingly enough, this includes the
 
“name decoration” you probably would have done to produce
Stash_initialize( ), Stash_cleanup( ), and so on. When
the function name is inside the struct, the compiler effectively does the
same thing. Therefore, initialize( ) inside the structure
Stash will not collide with a function named initialize( )
inside any other structure, or even a global function named
initialize( ). Most of the time you don't have to worry about
the function name decoration - you use the undecorated name. But sometimes
you do need to be able to specify that this initialize( ) belongs to
the struct Stash, and not to any other struct. In
particular, when you're defining the function you need to fully specify
which one it is. To accomplish this full specification, C++ has an operator
(::) called the
scope
resolution operator (named so because names can now be in different scopes:
at global scope or within the scope of a struct). For example, if you
want to specify initialize( ), which belongs to Stash, you
say Stash::initialize(int size). You can see how the scope resolution
operator is used in the function definitions:
//: C04:CppLib.cpp {O}
// C library converted to C++
// Declare structure and functions:
#include "CppLib.h"
#include <iostream>
#include <cassert>
using namespace std;
// Quantity of elements to add
// when increasing storage:
const int increment = 100;
 
void Stash::initialize(int sz) {
  size = sz;
  quantity = 0;
  storage = 0;
  next = 0;
}
 
int Stash::add(const void* element) {
  if(next >= quantity) // Enough space left?
    inflate(increment);
  // Copy element into storage,
  // starting at next empty space:
  int startBytes = next * size;
  unsigned char* e = (unsigned char*)element;
  for(int i = 0; i < size; i++)
    storage[startBytes + i] = e[i];
  next++;
  return(next - 1); // Index number
}
 
void* Stash::fetch(int index) {
  // Check index boundaries:
  assert(0 <= index);
  if(index >= next)
    return 0; // To indicate the end
  // Produce pointer to desired element:
  return &(storage[index * size]);
}
 
int Stash::count() {
  return next; // Number of elements in CStash
}
 
void Stash::inflate(int increase) {
  assert(increase > 0);
  int newQuantity = quantity + increase;
  int newBytes = newQuantity * size;
  int oldBytes = quantity * size;
  unsigned char* b = new unsigned char[newBytes];
  for(int i = 0; i < oldBytes; i++)
    b[i] = storage[i]; // Copy old to new
  delete []storage; // Old storage
  storage = b; // Point to new memory
  quantity = newQuantity;
}
 
void Stash::cleanup() {
  if(storage != 0) {
    cout << "freeing storage" << endl;
    delete []storage;
  }
} ///:~

There are several other things that are
different between C and C++. First, the declarations in the header
files are required by the
compiler. In C++ you cannot call a function without declaring it first. The
compiler will issue an error message otherwise. This is an important way to
ensure that function calls are consistent between the point where they are
called and the point where they are defined. By forcing you to
declare the function before you
call it, the C++ compiler virtually ensures that you will perform this
declaration by including the header file. If you also include the same header
file in the place where the functions are defined, then the compiler checks to
make sure that the declaration in the header and the function definition match
up. This means that the header file becomes a validated repository for function
declarations and ensures that functions are used consistently throughout all
translation units in the project.
Of course, global functions
can still be declared by hand
every place where they are defined and used. (This is so tedious that it becomes
very unlikely.) However, structures must always be declared before they are
defined or used, and the most convenient place to put a
structure
definition is in a header file, except for those you intentionally hide in a
file.
You can see that all the member functions
look almost the same as when they were C functions, except for the scope
resolution and the fact that the first argument from the C version of the
library is no longer explicit. It's still there, of course, because the
function has to be able to work on a particular struct variable. But
notice, inside the member function, that the member selection is also gone!
Thus, instead of saying s->size = sz; you say size = sz;
and eliminate the tedious s->, which didn't really add
anything to the meaning of what you were doing anyway. The C++ compiler is
apparently doing this for you. Indeed, it is taking the “secret”
first argument (the address of the structure that we were previously passing in
by hand) and applying the member selector whenever you refer to one of the data
members of a struct.
This
means that whenever you are inside the member function of another struct,
you can refer to any member (including another member function) by simply giving
its name. The compiler will search through the local structure's names
before looking for a global version of that name. You'll find that this
feature means that not only is your code easier to write, it's a lot
easier to read.
But what if, for some reason, you
want to be able to get your hands on the address of the structure? In the
C version of the library it was easy because each function's first
argument was a CStash* called s. In C++, things are even more
consistent. There's a special keyword, called
this, which produces the
address of the struct. It's the equivalent of the
‘s' in the C version of the library. So we can revert to the
C style of things by saying
this->size = Size;

The code generated by the compiler is
exactly the same, so you don't need to use this in such a fashion;
occasionally, you'll see code where people explicitly use this->
everywhere but it doesn't add anything to the meaning of the code and
often indicates an inexperienced programmer. Usually, you don't use
this often, but when you need it, it's there (some of the examples
later in the book will use this).
There's one last item to mention.
In C, you could assign a void* to any other pointer like
this:
int i = 10;
void* vp = &i; // OK in both C and C++
int* ip = vp; // Only acceptable in C

and
there was no complaint from the compiler. But in C++, this statement is not
allowed. Why? Because C is not so particular about type information, so it
allows you to assign a pointer with an unspecified type to a pointer with a
specified type. Not so with C++. Type is critical in C++, and the compiler
stamps its foot when there are any violations of type information. This has
always been important, but it is especially important in C++ because you have
member functions in structs. If you could pass pointers to structs
around with impunity in C++, then you could end up calling a member function for
a struct that doesn't even logically exist for that struct!
A real recipe for disaster. Therefore, while C++ allows the assignment of any
type of pointer to a void* (this was the original
intent of void*, which is required to be large enough to hold a pointer
to any type), it will not allow you to assign a void pointer to
any other type of pointer. A cast is always required to tell the reader and the
compiler that you really do want to treat it as the destination type.

This brings up an interesting issue. One
of the important goals for C++ is to compile as much existing C code as possible
to allow for an easy transition to the new language. However, this doesn't
mean any code that C allows will automatically be allowed in C++.
There
are a number of things the C compiler lets you get away with that are dangerous
and error-prone. (We'll look at them as the book progresses.) The C++
compiler generates warnings and errors for these situations. This is often much
more of an advantage than a hindrance. In fact, there are many situations in
which you are trying to run down an error in C and just can't find it, but
as soon as you recompile the program in C++, the
compiler points out the problem! In C, you'll often find that you can get
the program to compile, but then you have to get it to work. In C++, when the
program compiles correctly, it often works, too! This is because the language is
a lot stricter about type.
You can see a number of new things in the
way the C++ version of Stash is used in the following test
program:
//: C04:CppLibTest.cpp
//{L} CppLib
// Test of C++ library
#include "CppLib.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
 
int main() {
  Stash intStash;
  intStash.initialize(sizeof(int));
  for(int i = 0; i < 100; i++)
    intStash.add(&i);
  for(int j = 0; j < intStash.count(); j++)
    cout << "intStash.fetch(" << j << ") = "
         << *(int*)intStash.fetch(j)
         << endl;
  // Holds 80-character strings:
  Stash stringStash;
  const int bufsize = 80;
  stringStash.initialize(sizeof(char) * bufsize);
  ifstream in("CppLibTest.cpp");
  assure(in, "CppLibTest.cpp");
  string line;
  while(getline(in, line))
    stringStash.add(line.c_str());
  int k = 0;
  char* cp;
  while((cp =(char*)stringStash.fetch(k++)) != 0)
    cout << "stringStash.fetch(" << k << ") = "
         << cp << endl;
  intStash.cleanup();
  stringStash.cleanup();
} ///:~

One thing you'll notice is that the
variables are all defined “on the fly” (as introduced in the
previous chapter). That is, they are defined at any point in the scope, rather
than being restricted - as in C - to the beginning of the
scope.
The code is quite similar to
CLibTest.cpp, but when a member function is called, the call occurs using
the member selection operator 
 ‘.' preceded
by the name of the variable. This is a convenient syntax because it mimics the
selection of a data member of the structure. The difference is that this is a
function member, so it has an argument list.
Of course, the call that the compiler
actually generates looks much more like the original C library function.
Thus, considering name
decoration
and the passing of this, the C++ function call
intStash.initialize(sizeof(int), 100) becomes something like
Stash_initialize(&intStash, sizeof(int), 100). If you ever wonder
what's going on underneath the covers, remember that the
original
C++ compiler cfront from AT&T produced C code as its output, which
was then compiled by the underlying C compiler. This approach meant that
cfront could be quickly ported to any machine that had a C compiler, and
it helped to rapidly disseminate C++ compiler technology. But because the C++
compiler had to generate C, you know that there must be some way to represent
C++ syntax in C (some compilers still allow you to produce C
code).
There's one other change from
ClibTest.cpp, which is the introduction of the
require.h header file. This is a header file that
I created for this book to perform more sophisticated error checking than that
provided by assert( ). It contains several functions, including the
one used here called assure( ), which is
used for files. This function checks to see if the file has successfully been
opened, and if not it reports to standard error that the file could not be
opened (thus it needs the name of the file as the second argument) and exits the
program. The require.h functions will be used throughout the book, in
particular to ensure that there are the right number of command-line arguments
and that files are opened properly. The require.h functions replace
repetitive and distracting error-checking code, and yet they provide essentially
useful error messages. These functions will be fully explained later in the
book.
4-4 - 
What's an object?
Now that you've seen an initial
example, it's time to step back and take a look at some terminology. The
act of bringing functions inside structures is the root of what C++ adds to C,
and it introduces a new way of thinking about structures: as concepts. In C, a
struct is an agglomeration of data, a way to
package data so you can treat it in a clump. But it's hard to think about
it as anything but a programming convenience. The functions that operate on
those structures are elsewhere. However, with functions in the package, the
structure becomes a new creature, capable of describing both characteristics
(like a C struct does) and behaviors. The concept of an object, a
free-standing, bounded entity that can remember and act, suggests
itself.
In C++, an object is just a variable, and
the purest definition is “a region of storage” (this is a more
specific way of saying, “an object must have a unique
identifier,” which in the case of C++ is a unique
memory address). It's a place where you can store data, and it's
implied that there are also operations that can be performed on this
data.
Unfortunately, there's not complete
consistency across languages when it comes to these terms, although they are
fairly well-accepted. You will also sometimes encounter disagreement about what
an object-oriented language is, although that seems to be reasonably well sorted
out by now. There are languages that are
object-based, which means that they have objects
like the C++ structures-with-functions that you've seen so far. This,
however, is only part of the picture when it comes to an object-oriented
language, and languages that stop at packaging functions inside data structures
are object-based, not
object-oriented.
4-5 - 
Abstract data typing
The ability to package data with
functions allows you to create a new data type. This is often called
encapsulation(33).An existing data type may have several pieces of data packaged together. For
example, a float has an exponent, a mantissa, and a sign bit. You can
tell it to do things: add to another float or to an int, and so
on. It has characteristics and behavior.
The definition of Stash creates a
new data type. You can add( ), fetch( ), and
inflate( ). You create one by saying Stash s, just as you
create a float by saying float f. A Stash also has
characteristics and behavior. Even though it acts like a real, built-in data
type, we refer to it as an
abstract
data type, perhaps because it allows us to abstract a concept from the
problem space into the solution space. In addition, the C++ compiler treats it
like a new data type, and if you say a function expects a Stash, the
compiler makes sure you pass a Stash to that function. So the same level
of type checking happens with abstract data types (sometimes called
user-defined types) as
with built-in types.
You can immediately see a difference,
however, in the way you perform operations on objects. You say
object.memberFunction(arglist). This is “calling a member function
for an
object.” But in object-oriented parlance, this is also referred to as
“sending a message to an
object.” So for a Stash s, the statement s.add(&i)
“sends a message to s” saying, “add( ) this
to yourself.” In fact, object-oriented programming
can be summed up in a single phrase: sending messages to objects. Really,
that's all you do - create a bunch of objects and send messages to
them. The trick, of course, is figuring out what your objects and messages
are, but once you accomplish this the implementation in C++ is
surprisingly
straightforward.
4-6 - 
Object details
A question that often comes up in
seminars is, “How big is an object, and what does it look like?” The
answer is “about what you expect from a C struct.” In fact,
the code the C compiler produces for a C struct (with no C++ adornments)
will usually look exactly the same as the code produced by a C++
compiler. This is reassuring to those C programmers who depend on the details of
size and layout in their code, and for some reason directly access
structure bytes instead of using identifiers (relying on
a particular size and layout for a structure is a nonportable
activity).
The size of a
struct is the combined
size of all of its members. Sometimes when the compiler lays out a
struct, it adds extra bytes to make the boundaries come out neatly
- this may increase execution efficiency. In Chapter 15, you'll see
how in some cases “secret” pointers are added to the structure, but
you don't need to worry about that right now.
You can determine the size of a
struct using the
sizeof operator.
Here's a small example:
//: C04:Sizeof.cpp
// Sizes of structs
#include "CLib.h"
#include "CppLib.h"
#include <iostream>
using namespace std;
 
struct A {
  int i[100];
};
 
struct B {
  void f();
};
 
void B::f() {}
 
int main() {
  cout << "sizeof struct A = " << sizeof(A)
       << " bytes" << endl;
  cout << "sizeof struct B = " << sizeof(B)
       << " bytes" << endl;
  cout << "sizeof CStash in C = " 
       << sizeof(CStash) << " bytes" << endl;
  cout << "sizeof Stash in C++ = " 
       << sizeof(Stash) << " bytes" << endl;
} ///:~

On my machine (your results may vary) the
first print statement produces 200 because each int occupies two bytes.
struct B is something of an anomaly because it is a struct with no
data members. In C, this is illegal, but in C++ we need the option of creating a
struct whose sole task is to scope function names, so it is allowed.
Still, the result produced by the second print statement is a somewhat
surprising nonzero value. In
early versions of the language, the size was zero, but an awkward situation
arises when you create such objects: They have the same address as the object
created directly after them, and so are not distinct. One of the fundamental
rules of objects is that each
object must have a unique address, so structures with no data members will
always have some minimum nonzero size.
The last two sizeof statements
show you that the size of the structure in C++ is the same as the size of the
equivalent version in C. C++ tries not to add any unnecessary
overhead.
4-7 - 
Header file etiquette
When you create a struct
containing member functions, you are creating a new data type. In general, you
want this type to be easily accessible to yourself and others. In addition, you
want to separate the interface (the declaration) from
the implementation (the definition of the member
functions) so the implementation can be changed without forcing a re-compile of
the entire system. You achieve this end by putting the declaration for your new
type in a header file.
When I first learned to program in C, the
header file was a mystery to me.
Many C books don't seem to emphasize it, and the compiler didn't
enforce function declarations, so it seemed optional most of the time, except
when structures were declared. In C++ the use of header files becomes crystal
clear. They are virtually mandatory for easy program development, and you put
very specific information in them: declarations. The
header file tells the compiler what is available in your library. You can use
the library even if you only possess the header file along with the object file
or library file; you don't need the source code for the cpp file.
The header file is where the interface specification is stored.
Although it is not enforced by the
compiler, the best approach to building large projects in C is to use libraries;
collect associated functions into the same object module or library, and use a
header file to hold all the declarations for the functions. It is de
rigueur in C++; you could throw any function into a C library, but the C++
abstract data type determines the functions that are associated by dint of their
common access to the data in a struct. Any member function must be
declared in the struct declaration; you cannot put it elsewhere. The use
of function libraries was encouraged in C and institutionalized in
C++.
4-7-1 - 
Importance of header files
When using a function from a library, C
allows you the option of ignoring the header file and simply declaring the
function by hand. In the past, people would sometimes do this to speed up the
compiler just a bit by avoiding the task of opening and including the file (this
is usually not an issue with modern compilers). For example, here's an
extremely lazy declaration of the C function printf( ) (from
<stdio.h>):
printf(...);

The ellipses
specify a
variable
argument
list(34),
which says: printf( ) has some arguments, each of which has a type,
but ignore that. Just take whatever arguments you see and accept them. By using
this kind of declaration, you suspend all error checking on the
arguments.
This practice can cause subtle problems.
If you declare functions by hand, in one file you may make a mistake. Since the
compiler sees only your hand-declaration in that file, it may be able to adapt
to your mistake. The program will then link correctly, but the use of the
function in that one file will be faulty. This is a tough error to find, and is
easily avoided by using a header file.
If you place all your function
declarations in a header file, and include that header everywhere you use the
function and where you define the function, you ensure a consistent declaration
across the whole system. You also ensure that the
declaration and the definition
match by including the header in the definition file.
If a struct is declared in a
header file in C++, you must include the header file everywhere a
struct is used and where struct member functions are defined. The
C++ compiler will give an error message if you try to call a regular function,
or to call or define a member function, without declaring it first. By enforcing
the proper use of header files, the language ensures
consistency in libraries, and reduces bugs by forcing the same interface to be
used everywhere.
The header is a contract between you and
the user of your library. The contract describes your data structures, and
states the arguments and return values for the function calls. It says,
“Here's what my library does.” The user needs some of this
information to develop the application and the compiler needs all of it to
generate proper code. The user of the struct simply includes the header
file, creates objects (instances) of that struct, and links in the object
module or library (i.e.: the compiled code).
The compiler enforces the contract by
requiring you to declare all structures and functions before they are used and,
in the case of member functions, before they are defined. Thus, you're
forced to put the declarations in the header and to include the header in the
file where the member functions are defined and the file(s) where they are used.
Because a single header file describing your library is included throughout the
system, the compiler can ensure consistency and prevent
errors.
There are certain issues that you must be
aware of in order to organize your code
properly and write effective
header files. The first issue concerns what you can put into header files. The
basic rule is “only declarations,” that is,
only information to the compiler but nothing that allocates storage by
generating code or creating variables. This is because the header file will
typically be included in several translation units in a project, and if storage
for one identifier is allocated in more than one place, the linker will come up
with a multiple definition error (this is C++'s
one definition rule: You
can declare things as many times as you want, but there can be only one actual
definition for each thing).
This rule isn't completely hard and
fast. If you define a variable that is “file
static” (has visibility only within a file) inside
a header file, there will be multiple instances of that data across the project,
but the linker won't have a
collision(35).
Basically, you don't want to do anything in the header file that will
cause an ambiguity at link time.
4-7-2 - 
The multiple-declaration problem
The second header-file issue is this:
when you put a struct
declaration in a header file, it is possible for the file to be included more
than once in a complicated program. Iostreams are a good example. Any time a
struct does I/O it may include one of the iostream headers. If the cpp
file you are working on uses more than one kind of struct (typically
including a header file for each one), you run the risk of including the
<iostream> header more than once and re-declaring
iostreams.
The compiler considers the
redeclaration of a structure (this includes both
structs and classes)to be an error, since it would
otherwise allow you to use the same name for different types. To prevent this
error when multiple header files are included, you need to build some
intelligence into your header files using the preprocessor
(Standard C++ header files like <iostream>
already have this “intelligence”).
Both C and C++ allow you to redeclare a
function, as long as the two declarations match, but neither will allow the
redeclaration of a
structure.
In C++ this rule is especially important because if the compiler allowed you to
redeclare a structure and the two declarations differed, which one would it
use?
The problem of redeclaration comes up
quite a bit in C++ because each data type (structure with functions) generally
has its own header file, and you have to include one header in another if you
want to create another data type that uses the first one. In any cpp file
in your project, it's likely that you'll include several files that
include the same header file. During a single compilation, the compiler can see
the same header file several times. Unless you do something about it, the
compiler will see the redeclaration of your structure and report a compile-time
error. To solve the problem, you need to know a bit more about the
preprocessor.
4-7-3 - The preprocessor directives #define, #ifdef, and #endif
The preprocessor directive #define
can be used to create compile-time flags. You have two choices: you can simply
tell the preprocessor that the flag is defined, without specifying a
value:
#define FLAG

or you can give it a value (which is the
typical C way to define a constant):
#define PI 3.14159

In either case, the label can now be
tested by the preprocessor to see if it has been defined:
#ifdef FLAG

This will yield a true result, and the
code following the #ifdef will be included in the package sent to the
compiler. This inclusion stops when the preprocessor encounters the
statement
#endif

or
#endif // FLAG

Any non-comment after the #endif
on the same line is illegal, even though some compilers may accept it. The
#ifdef/#endif pairs may be nested within each
other.
The complement of #define is
#undef (short for “un-define”), which will make an #ifdef
statement using the same variable yield a false result. #undef will
also cause the preprocessor to stop using a macro. The complement of
#ifdef is #ifndef, which will yield a true
if the label has not been
defined (this is the one we will use in header files).
There are other useful features in the C
preprocessor. You should check your local documentation for the full set.

4-7-4 - 
A standard for header
files
In each header file that contains a
structure, you should first check to see if this header has already been
included in this particular cpp file. You do this by testing a
preprocessor flag. If the flag isn't set, the file wasn't included
and you should set the flag (so the structure can't get re-declared) and
declare the structure. If the flag was set then that type has already been
declared so you should just ignore the code that declares it. Here's how
the header file should look:
#ifndef HEADER_FLAG
#define HEADER_FLAG
// Type declaration here...
#endif // HEADER_FLAG

As you can see, the first time the header
file is included, the contents of the header file (including your type
declaration) will be included by the preprocessor. All the subsequent times it
is included - in a single compilation unit - the type declaration
will be ignored. The name HEADER_FLAG can be any unique name, but a reliable
standard to follow is to capitalize the name of the header file and replace
periods with underscores (leading underscores, however, are reserved for system
names). Here's an example:
//: C04:Simple.h
// Simple header that prevents re-definition
#ifndef SIMPLE_H
#define SIMPLE_H
 
struct Simple {
  int i,j,k;
  initialize() { i = j = k = 0; }
};
#endif // SIMPLE_H ///:~

Although the SIMPLE_H after the
#endif is commented out and thus ignored by the preprocessor, it is
useful for documentation.
These preprocessor statements that
prevent multiple inclusion are often referred to as include
guards.
4-7-5 - 
Namespaces in headers
You'll notice that
using
directives are present in nearly all the cpp files in this book,
usually in the form: 
using namespace std;

Since std is the namespace that
surrounds the entire Standard C++ library, this particular using directive
allows the names in the Standard C++ library to be used without qualification.
However, you'll virtually never see a using directive in a header file (at
least, not outside of a scope). The reason is that the using directive
eliminates the protection of that particular namespace, and the effect lasts
until the end of the current compilation unit. If you put a using directive
(outside of a scope) in a header file, it means that this loss of 
“namespace protection” will occur with any file that includes this
header, which often means other header files. Thus, if you start putting using
directives in header files, it's very easy to end up “turning
off” namespaces practically everywhere, and thereby neutralizing the
beneficial effects of namespaces. 
In short: don't put using
directives in header
files.
4-7-6 - 
Using headers in
projects
When building a project in C++,
you'll usually create it by bringing together a lot of different types
(data structures with associated functions). You'll usually put the
declaration for each type or group of associated types in a separate header
file, then define the functions
for that type in a translation unit. When you use that type, you must include
the header file to perform the declarations properly.
Sometimes that pattern will be followed
in this book, but more often the examples will be very small, so everything
- the structure declarations, function definitions, and the
main( ) function - may appear in a single file. However, keep
in mind that you'll want to use separate files and header files in
practice.
4-8 - 
Nested
structures
The convenience of taking data and
function names out of the global name space extends to structures. You can nest
a structure within another structure, and therefore keep associated elements
together. The declaration syntax is what you would expect, as you can see in the
following structure, which implements a push-down stack as a simple linked list
so it “never” runs
out of memory: 
//: C04:Stack.h
// Nested struct in linked list
#ifndef STACK_H
#define STACK_H
 
struct Stack {
  struct Link {
    void* data;
    Link* next;
    void initialize(void* dat, Link* nxt);
  }* head;
  void initialize();
  void push(void* dat);
  void* peek();
  void* pop();
  void cleanup();
};
#endif // STACK_H ///:~

The nested struct is called
Link, and it contains a pointer to the next Link in the list and a
pointer to the data stored in the Link. If the next pointer is
zero, it means you're at the end of the list.
Notice that the head pointer is
defined right after the declaration for struct Link, instead of a
separate definition Link* head. This is a syntax that came from C, but it
emphasizes the importance of the semicolon after the structure declaration; the
semicolon indicates the end of the comma-separated list of definitions of that
structure type. (Usually the list is empty.)
The nested structure has its own
initialize( ) function, like all the structures presented so far, to
ensure proper initialization. Stack has both an initialize( )
and cleanup( ) function, as well as push( ), which takes
a pointer to the data you wish to store (it assumes this has been allocated on
the heap), and pop( ), which returns the data pointer from
the top of the Stack and removes the top element. (When you
pop( ) an element, you are responsible for destroying the object
pointed to by the data.) The peek( ) function also returns
the data pointer from the top element, but it leaves the top element on
the Stack.
Here are the definitions for the member
functions:
//: C04:Stack.cpp {O}
// Linked list with nesting
#include "Stack.h"
#include "../require.h"
using namespace std;
 
void 
Stack::Link::initialize(void* dat, Link* nxt) {
  data = dat;
  next = nxt;
}
 
void Stack::initialize() { head = 0; }
 
void Stack::push(void* dat) {
  Link* newLink = new Link;
  newLink->initialize(dat, head);
  head = newLink;
}
 
void* Stack::peek() { 
  require(head != 0, "Stack empty");
  return head->data; 
}
 
void* Stack::pop() {
  if(head == 0) return 0;
  void* result = head->data;
  Link* oldHead = head;
  head = head->next;
  delete oldHead;
  return result;
}
 
void Stack::cleanup() {
  require(head == 0, "Stack not empty");
} ///:~

The first definition is particularly
interesting because it shows you how to define a member of a nested structure.
You simply use an additional level of scope resolution to specify the name of
the enclosing struct. Stack::Link::initialize( ) takes the
arguments and assigns them to its members.
Stack::initialize( ) sets
head to zero, so the object knows it has an empty list.
Stack::push( ) takes the
argument, which is a pointer to the variable you want to keep track of, and
pushes it on the Stack. First, it uses new to allocate storage for
the Link it will insert at the top. Then it calls Link's
initialize( ) function to assign the appropriate values to the
members of the Link. Notice that the next pointer is assigned to
the current head; then head is assigned to the new Link
pointer. This effectively pushes the Link in at the top of the
list.
Stack::pop( ) captures the
data pointer at the current top of the Stack; then it moves the
head pointer down and deletes the old top of the Stack, finally
returning the captured pointer. When pop( ) removes the last
element, then head again becomes zero, meaning the Stack is
empty.
Stack::cleanup( )
doesn't actually do any cleanup. Instead, it establishes a firm policy
that “you (the client programmer using this Stack object) are
responsible for popping all the elements off this Stack and deleting
them.” The require( ) is used to indicate that a programming
error has occurred if the Stack is not empty.
Why couldn't the Stack
destructor be responsible for all the objects that the client programmer
didn't pop( )? The problem is that the Stack is holding
void pointers, and you'll learn in Chapter 13 that calling
delete for a void* doesn't clean things up properly. The
subject of “who's responsible for the memory” is not even
that simple, as we'll see in later chapters.
Here's an example to test the
Stack:
//: C04:StackTest.cpp
//{L} Stack
//{T} StackTest.cpp
// Test of nested linked list
#include "Stack.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
 
int main(int argc, char* argv[]) {
  requireArgs(argc, 1); // File name is argument
  ifstream in(argv[1]);
  assure(in, argv[1]);
  Stack textlines;
  textlines.initialize();
  string line;
  // Read file and store lines in the Stack:
  while(getline(in, line))
    textlines.push(new string(line));
  // Pop the lines from the Stack and print them:
  string* s;
  while((s = (string*)textlines.pop()) != 0) {
    cout << *s << endl;
    delete s; 
  }
  textlines.cleanup();
} ///:~

This is similar to the earlier example,
but it pushes lines from a file (as string pointers)on the
Stack and then pops them off, which results in the file being printed out
in reverse order. Note that the pop( ) member function returns a
void* and this must be cast back to a string* before it can be
used. To print the string, the pointer is dereferenced.
As textlines is being filled, the
contents of line is “cloned” for each push( ) by
making a new string(line). The value returned from the new-expression is
a pointer to the new string that was created and that copied the
information from line. If you had simply passed the address of
line to push( ), you would end up with a Stack filled
with identical addresses, all pointing to line. You'll learn more
about this “cloning” process later in the book.
The file name is taken from the command
line. To guarantee that there are enough arguments on
the command line, you see a second function used from the
require.h header file:
requireArgs( ), which compares argc
to the desired number of arguments and prints an appropriate error message and
exits the program if there aren't enough
arguments.
4-8-1 - 
Global scope
resolution
The scope resolution operator gets you
out of situations in which the name the compiler chooses by default (the
“nearest” name) isn't what you want. For example, suppose you
have a structure with a local identifier a, and you want to select a
global identifier a from inside a member function. The compiler would
default to choosing the local one, so you must tell it to do otherwise. When you
want to specify a global name using scope resolution, you use the
operator with nothing in front
of it. Here's an example that shows global scope resolution for both a
variable and a function:
//: C04:Scoperes.cpp
// Global scope resolution
int a;
void f() {}
 
struct S {
  int a;
  void f();
};
 
void S::f() {
  ::f();  // Would be recursive otherwise!
  ::a++;  // Select the global a
  a--;    // The a at struct scope
}
int main() { S s; f(); } ///:~

Without scope resolution in
S::f( ), the compiler would default to selecting the member versions
of f( ) and
a.
4-9 - 
Summary
In this chapter, you've learned the
fundamental “twist” of C++: that you can place functions inside of
structures. This new type of structure is called an abstract data type,
and variables you create using this structure are called objects, or
instances, of that type. Calling a member function for an object is
called sending a message to that object. The primary action in
object-oriented programming is sending messages to objects.
Although packaging data and functions
together is a significant benefit for code organization and makes library use
easier because it prevents name clashes by hiding the names, there's a lot
more you can do to make programming safer in C++. In the next chapter,
you'll learn how to protect some members of a struct so that only
you can manipulate them. This establishes a clear boundary between what the user
of the structure can change and what only the programmer may
change.
4-10 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
http://www.BruceEckel.com.
		In the Standard C library,
the function puts( ) prints a char array to the console (so you can
say puts("hello")). Write a C program that uses puts( ) but
does not include <stdio.h> or otherwise declare the function.
Compile this program with your C compiler. (Some C++ compilers are not distinct
from their C compilers; in this case you may need to discover a command-line
flag that forces a C compilation.) Now compile it with the C++ compiler and note
the
difference.
		Create a
struct declaration with a single member function, then create a
definition for that member function. Create an object of your new data type, and
call the member
function.
		Change
your solution to Exercise 2 so the struct is declared in a properly
“guarded” header file, with the definition in one cpp file
and your main( ) in
another.
		Create a
struct with a single int data member, and two global functions,
each of which takes a pointer to that struct. The first function has a
second int argument and sets the struct's int to the
argument value, the second displays the int from the struct. Test
the functions.

		Repeat Exercise 4
but move the functions so they are member functions of the struct, and
test again.
		Create a
class that (redundantly) performs data member selection and a member function
call using the this keyword (which refers to the address of the current
object).
		Make a
Stash that holds doubles. Fill it with 25 double values,
then print them out to the
console.
		Repeat
Exercise 7 with
Stack.
		Create
a file containing a function f( ) that takes an int argument
and prints it to the console using the printf( ) function in
<stdio.h> by saying: printf(“%d\n”, i) in
which i is the int you wish to print. Create a separate file
containing main( ), and in this file declare f( ) to
take a float argument. Call f( ) from inside
main( ). Try to compile and link your program with the C++ compiler
and see what happens. Now compile and link the program using the C compiler, and
see what happens when it runs. Explain the
behavior.
		Find out
how to produce assembly language from your C and C++ compilers. Write a function
in C and a struct with a single member function in C++. Produce assembly
language from each and find the function names that are produced by your C
function and your C++ member function, so you can see what sort of name
decoration occurs inside the
compiler.
		Write a
program with conditionally-compiled code in main( ), so that when a
preprocessor value is defined one message is printed, but when it is not defined
another message is printed. Compile this code experimenting with a
#define within the program, then discover the way your compiler takes
preprocessor definitions on the command line and experiment with
that.
		Write a
program that uses assert( ) with an argument that is always false
(zero) to see what happens when you run it. Now compile it with #define
NDEBUG and run it again to see the
difference.
		Create
an abstract data type that represents a videotape in a video rental store. Try
to consider all the data and operations that may be necessary for the Video
type to work well within the video rental management system. Include a
print( ) member function that displays information about the
Video.
		Create
a Stack object to hold the Video objects from Exercise 13. Create
several Video objects, store them in the Stack, then display them
using
Video::print( ).
		Write
a program that prints out all the sizes for the fundamental data types on your
computer using
sizeof.
		Modify
Stash to use a vector<char> as its underlying data
structure.
		Dynamically
create pieces of storage of the following types, using new: int,
long, an array of 100 chars, an array of 100 floats. Print
the addresses of these and then free the storage using
delete.
		Write
a function that takes a char* argument. Using new, dynamically
allocate an array of char that is the size of the char array
that's passed to the function. Using array indexing, copy the characters
from the argument to the dynamically allocated array (don't forget the
null terminator) and return the pointer to the copy. In your
main( ), test the function by passing a static quoted character
array, then take the result of that and pass it back into the function. Print
both strings and both pointers so you can see they are different storage. Using
delete, clean up all the dynamic
storage.
		Show an
example of a structure declared within another structure (a nested
structure). Declare data members in both structs, and declare and
define member functions in both structs. Write a main( ) that
tests your new
types.
		How big is a
structure? Write a piece of code that prints the size of various structures.
Create structures that have data members only and ones that have data members
and function members. Then create a structure that has no members at all. Print
out the sizes of all these. Explain the reason for the result of the structure
with no data members at
all.
		C++
automatically creates the equivalent of a typedef for structs, as
you've seen in this chapter. It also does this for enumerations and
unions. Write a small program that demonstrates
this.
		Create a
Stack that holds Stashes. Each Stash will hold five lines
from an input file. Create the Stashes using new. Read a file into
your Stack, then reprint it in its original form by extracting it from
the Stack.

		Modify Exercise 22
so that you create a struct that encapsulates the Stack of
Stashes. The user should only add and get lines via member functions, but
under the covers the struct happens to use a Stack of
Stashes.
		Create
a struct that holds an int and a pointer to another instance of
the same struct. Write a function that takes the address of one of these
structs and an int indicating the length of the list you want
created. This function will make a whole chain of these structs (a
linked list), starting from the argument (the head of the list),
with each one pointing to the next. Make the new structs using
new, and put the count (which object number this is) in the int.
In the last struct in the list, put a zero value in the pointer to
indicate that it's the end. Write a second function that takes the head of
your list and moves through to the end, printing out both the pointer value and
the int value for each
one.
		Repeat Exercise
24, but put the functions inside a struct instead of using
“raw” structs and
functions.


5 - Hiding the Implementation
A typical C library contains a
struct and some 
associated
functions to act on that struct. So far,

you've seen how C++ takes functions that
are conceptually associated and makes them literally associated by

putting the function declarations inside
the scope of the struct, changing the way functions are called for the
struct, eliminating the passing of the structure address as the first
argument, and adding a new type name to the program (so you don't have to
create a typedef for the struct tag).
These are all convenient - they
help you organize your code and make it easier to write and read. However, there
are other important issues when making libraries easier in C++, especially the
issues of safety and control. This chapter looks at the subject of boundaries in
structures.
5-1 - 
Setting limits
In any relationship it's important
to have boundaries that are respected by all parties involved. When you create a
library, you establish a relationship with the client
programmer who uses that
library to build an application or another library.
In a C
struct, as with most
things in C, there are no rules. Client programmers can do anything they want
with that struct, and there's no way to force any particular
behaviors. For example, even though you saw in the last chapter the importance
of the functions named initialize( ) and cleanup( ), the
client programmer has the option not to call those functions. (We'll look
at a better approach in the next chapter.) And even though you would really
prefer that the client programmer not directly manipulate some of the members of
your struct, in C there's no way to prevent it. Everything's
naked to the world.
There are two reasons for controlling
access
to
members. The first is to keep the client programmer's hands off tools they
shouldn't touch, tools that are necessary for the internal machinations of
the data type, but not part of the interface the client programmer needs to
solve their particular problems. This is actually a service to client
programmers because they can easily see what's important to them and what
they can ignore.
The second reason for access control is
to allow the library designer to change the internal workings of the structure
without worrying about how it will affect the client programmer. In the
Stack example in the last chapter, you might want to allocate the storage
in big chunks, for speed, rather than creating new storage each time an element
is added. If the interface and implementation are clearly separated and
protected, you can accomplish this and require only a relink by the client
programmer.
5-2 - 
C++ access control
C++ introduces three new keywords to set
the boundaries in a structure: public, private, and
protected. Their use and meaning are remarkably straightforward. These
access specifiers
are used
only in a structure declaration, and they change the boundary for all the
declarations that follow them. Whenever you use an access specifier, it must be
followed by a colon.
public
means all member declarations that follow are available
to everyone. public members are like struct members. For example,
the following struct declarations are identical:
//: C05:Public.cpp
// Public is just like C's struct
 
struct A {
  int i;
  char j;
  float f;
  void func();
};
 
void A::func() {}
 
struct B {
public:
  int i;
  char j;
  float f;
  void func();
};
 
void B::func() {}  
 
int main() {
  A a; B b;
  a.i = b.i = 1;
  a.j = b.j = 'c';
  a.f = b.f = 3.14159;
  a.func();
  b.func();
} ///:~

The
private keyword, on the
other hand, means that no one can access that member except you, the creator of
the type, inside function members of that type. private is a brick wall
between you and the client programmer; if someone tries to access a
private member, they'll get a compile-time error. In struct
B in the example above, you may want to make portions of the representation
(that is, the data members) hidden, accessible only to you:
//: C05:Private.cpp
// Setting the boundary
 
struct B {
private:
  char j;
  float f;
public:
  int i;
  void func();
};
 
void B::func() {
  i = 0;
  j = '0';
  f = 0.0;
};
 
int main() {
  B b;
  b.i = 1;    // OK, public
//!  b.j = '1';  // Illegal, private
//!  b.f = 1.0;  // Illegal, private
} ///:~

Although func( ) can access
any member of B (because func( ) is a member of B,
thus automatically granting it permission), an ordinary global function like
main( ) cannot. Of course, neither can member functions of other
structures. Only the functions that are clearly stated in the structure
declaration (the “contract”) can have access to private
members.
There is no required order for access
specifiers,
and they may appear more than once. They affect all the members declared after
them and before the next access
specifier.
5-2-1 - 
protected
The last access specifier is
protected.
protected acts just like private, with one exception that we
can't really talk about right now: “Inherited” structures
(which cannot access private members) are granted access to
protected members. This will become clearer in Chapter 14 when
inheritance is introduced.  For current purposes, consider protected to
be just like
private.
5-3 - 
Friends
What if you want to explicitly grant
access to a function that isn't a member of the current structure? This is
accomplished by declaring that function a friendinside the structure declaration. It's
important that the friend declaration occurs inside the structure
declaration because you (and the compiler) must be able to read the structure
declaration and see every rule about the size and behavior of that data type.
And a very important rule in any relationship is, “Who can access my
private implementation?”
The class controls which code has access
to its members. There's no magic way to “break in” from the
outside if you aren't a friend; you can't declare a new class
and say, “Hi, I'm a friend of Bob!” and expect to see
the private and protected members of Bob.
You can declare a global function as a
friend,
and you can also declare a member function of another
structure,
or even an entire structure, as a friend. Here's an example
:
//: C05:Friend.cpp
// Friend allows special access
 
// Declaration (incomplete type specification):
struct X;
 
struct Y {
  void f(X*);
};
 
struct X { // Definition
private:
  int i;
public:
  void initialize();
  friend void g(X*, int); // Global friend
  friend void Y::f(X*);  // Struct member friend
  friend struct Z; // Entire struct is a friend
  friend void h();
};
 
void X::initialize() { 
  i = 0; 
}
 
void g(X* x, int i) { 
  x->i = i; 
}
 
void Y::f(X* x) { 
  x->i = 47; 
}
 
struct Z {
private:
  int j;
public:
  void initialize();
  void g(X* x);
};
 
void Z::initialize() { 
  j = 99;
}
 
void Z::g(X* x) { 
  x->i += j; 
}
 
void h() {
  X x;
  x.i = 100; // Direct data manipulation
}
 
int main() {
  X x;
  Z z;
  z.g(&x);
} ///:~

struct Y has a member function
f( ) that will modify an object of type X. This is a bit of a
conundrum because the C++ compiler requires you to declare everything before you
can refer to it, so struct Y must be declared before its member
Y::f(X*) can be declared as a friend in struct X. But for
Y::f(X*) to be declared, struct X must be declared
first!
Here's the solution. Notice that
Y::f(X*) takes the address of an X
object. This is critical because
the compiler always knows how to pass an address, which is of a fixed size
regardless of the object being passed, even if it doesn't have full
information about the size of the type. If you try to pass the whole object,
however, the compiler must see the entire structure definition of X, to
know the size and how to pass it, before it allows you to declare a function
such as Y::g(X). 
By passing the address of an X,
the compiler allows you to make an incomplete type specification
of
X prior to declaring Y::f(X*). This is accomplished in the
declaration: 
struct X;

This declaration simply tells the
compiler there's a struct by that name, so it's OK to refer
to it as long as you don't require any more knowledge than the
name.
Now, in struct X, the function
Y::f(X*) can be declared as a friend with no problem. If you tried
to declare it before the compiler had seen the full specification for Y,
it would have given you an error. This is a safety feature to ensure consistency
and eliminate bugs.
Notice the two other friend
functions. The first declares an ordinary global function g( ) as a
friend. But g( ) has not been previously declared at the
global scope! It turns out that friend can be used this way to
simultaneously declare the function and give it friend status.
This extends to entire structures: 
friend struct Z;

is an incomplete type specification for
Z, and it gives the entire structure friend
status.
5-3-1 - 
Nested friends
Making a structure nested doesn't
automatically give it access to private members. To accomplish this, you
must follow a particular form: first, declare (without defining) the nested
structure, then declare it as a friend, and finally define the structure.
The structure definition must be separate from the friend declaration,
otherwise it would be seen by the compiler as a non-member. Here's an
example:
//: C05:NestFriend.cpp
// Nested friends
#include <iostream>
#include <cstring> // memset()
using namespace std;
const int sz = 20;
 
struct Holder {
private:
  int a[sz];
public:
  void initialize();
  struct Pointer;
  friend struct Pointer;
  struct Pointer {
  private:
    Holder* h;
    int* p;
  public:
    void initialize(Holder* h);
    // Move around in the array:
    void next();
    void previous();
    void top();
    void end();
    // Access values:
    int read();
    void set(int i);
  };
};
 
void Holder::initialize() {
  memset(a, 0, sz * sizeof(int));
}
 
void Holder::Pointer::initialize(Holder* rv) {
  h = rv;
  p = rv->a;
}
 
void Holder::Pointer::next() {
  if(p < &(h->a[sz - 1])) p++;
}
 
void Holder::Pointer::previous() {
  if(p > &(h->a[0])) p--;
}
 
void Holder::Pointer::top() {
  p = &(h->a[0]);
}
 
void Holder::Pointer::end() {
  p = &(h->a[sz - 1]);
}
 
int Holder::Pointer::read() {
  return *p;
}
 
void Holder::Pointer::set(int i) {
  *p = i;
}
 
int main() {
  Holder h;
  Holder::Pointer hp, hp2;
  int i;
 
  h.initialize();
  hp.initialize(&h);
  hp2.initialize(&h);
  for(i = 0; i < sz; i++) {
    hp.set(i);
    hp.next();
  }
  hp.top();
  hp2.end();
  for(i = 0; i < sz; i++) {
    cout << "hp = " << hp.read()
         << ", hp2 = " << hp2.read() << endl;
    hp.next();
    hp2.previous();
  }
} ///:~

Once Pointer is declared, it is
granted access to the private members of Holder by
saying:
friend struct Pointer;

The struct Holder contains an
array of ints and the Pointer allows you to access them. Because
Pointer is strongly associated with Holder, it's sensible to
make it a member structure of Holder. But because Pointer is a
separate class from Holder, you can make more than one of them in
main( ) and use them to select different parts of the array.
Pointer is a structure instead of a raw C pointer, so you can guarantee
that it will always safely point inside the Holder.
The Standard C library function
memset( ) (in
<cstring>) is used
for convenience in the program above. It sets all memory starting at a
particular address (the first argument) to a particular value (the second
argument) for n bytes past the starting address (n is the third
argument). Of course, you could have simply used a loop to iterate through all
the memory, but memset( ) is available, well-tested (so it's
less likely you'll introduce an error), and probably more efficient than
if you coded it by
hand.
5-3-2 - 
Is it pure?
The class definition gives you an audit
trail, so you can see from looking at the class which functions have permission
to modify the private parts of the class. If a function is a friend, it
means that it isn't a member, but you want to give permission to modify
private data anyway, and it must be listed in the class definition so everyone
can see that it's one of the privileged functions. 
C++
is a hybrid object-oriented language, not a pure one, and friend was
added to get around practical problems that crop up. It's fine to point
out that this makes the language less “pure,” because C++ is
designed to be pragmatic, not to aspire to an abstract
ideal.
5-4 - 
Object layout
Chapter 4 stated that a struct
written for a C compiler and later compiled with C++ would be unchanged. This
referred primarily to the object layout of the struct, that is, where the
storage for the individual variables is positioned in the memory allocated for
the object. If the C++ compiler changed the layout
of C
structs, then any C code you wrote that inadvisably took advantage of
knowledge of the positions of variables in the struct would
break.
When you start using access specifiers,
however, you've moved completely into the C++ realm, and things change a
bit. Within a particular “access block” (a
group of declarations delimited by access specifiers), the variables are
guaranteed to be laid out contiguously, as in C. However, the access blocks may
not appear in the object in the order that you declare them. Although the
compiler will usually lay the blocks out exactly as you see them, there
is no rule about it, because a particular machine architecture and/or operating
environment may have explicit support for
private and
protected that might
require those blocks to be placed in special memory locations. The language
specification doesn't want to restrict this kind of
advantage.
Access specifiers are part of the
structure and don't affect the objects created from the structure. All of
the access specification information disappears before the program is run;
generally this happens during compilation. In a running program, objects become
“regions of storage” and nothing more. If you really want to, you
can break all the rules and access the memory directly, as you can in C. C++ is
not designed to prevent you from doing unwise things. It just provides you with
a much easier, highly desirable alternative.
In general, it's not a good idea to
depend on anything that's implementation-specific when you're
writing a program. When you must have implementation-specific dependencies,
encapsulate them inside a structure so that any porting changes are focused in
one
place.
5-5 - 
The class
Access control is often referred to as
implementation hiding.
Including functions within structures (often referred to as
encapsulation(36))
produces a data type with characteristics and behaviors, but access control puts
boundaries within that data type, for two important reasons. The first is to
establish what the client programmers can and can't use. You can build
your internal mechanisms into the structure without worrying that client
programmers will think that these mechanisms are part of the interface they
should be using.
This feeds directly into the second
reason, which is to separate the interface from the implementation.
 If the
structure is used in a set of programs, but the client programmers can't
do anything but send messages to the public interface, then you can
change anything that's private without requiring modifications to
their code.
Encapsulation and access control, taken
together, invent something more than a C struct. We're now in the
world of object-oriented programming, where a structure is describing a class of
objects as you would describe a class of fishes or a class of birds: Any object
belonging to this class will share these characteristics and behaviors.
That's what the structure declaration has become, a description of the way
all objects of this type will look and act.
In the original OOP
language, Simula-67, the keyword
class was used to
describe a new data type. This apparently inspired Stroustrup to choose the same
keyword for C++, to emphasize that this was the focal point of the whole
language: the creation of new data types that are more than just C
structs with functions. This certainly seems like adequate justification
for a new keyword.
However, the use of class in C++
comes close to being an unnecessary keyword. It's identical to the
struct keyword in absolutely every way except one: class defaults
to private, whereas struct defaults to public. Here are two
structures that produce the same result:
//: C05:Class.cpp
// Similarity of struct and class
 
struct A {
private:
  int i, j, k;
public:
  int f();
  void g();
};
 
int A::f() { 
  return i + j + k; 
}
 
void A::g() { 
  i = j = k = 0; 
}
 
// Identical results are produced with:
 
class B {
  int i, j, k;
public:
  int f();
  void g();
};
 
int B::f() { 
  return i + j + k; 
}
 
void B::g() { 
  i = j = k = 0; 
} 
 
int main() {
  A a;
  B b;
  a.f(); a.g();
  b.f(); b.g();
} ///:~

The class is the fundamental OOP
concept in C++. It is one of the keywords that will not be set in bold in
this book - it becomes annoying with a word repeated as often as
“class.” The shift to classes is so important that I suspect
Stroustrup's preference would have been to throw struct out
altogether, but the need for backwards compatibility with C wouldn't allow
that.
Many people prefer a style of creating
classes that is more struct-like than class-like, because you override
the “default-to-private” behavior of the class by starting
out with public elements:
class X {
public:
  void interface_function();
private:
  void private_function();
  int internal_representation;
};

The logic behind this is that it makes
more sense for the reader to see the members of interest first, then they can
ignore anything that says private. Indeed, the only reasons all the other
members must be declared in the class at all are so the compiler knows how big
the objects are and can allocate them properly, and so it can guarantee
consistency.
The examples in this book, however, will
put the private members first, like this:
class X {
  void private_function();
  int internal_representation;
public:
  void interface_function();
};

Some people even go to the trouble of
decorating their own private names:
class Y {
public:
  void f();
private:
  int mX;  // "Self-decorated" name
};

Because mX is already hidden in
the scope of Y, the m (for “member”) is unnecessary.
However, in projects with many global variables (something you should strive to
avoid, but which is sometimes inevitable in existing projects), it is helpful to
be able to distinguish inside a member function definition which data is global
and which is a
member.
5-5-1 - 
Modifying Stash to use access control
It makes sense to take the examples from
Chapter 4 and modify them to use classes and access control. Notice how the
client programmer portion of the interface is now clearly distinguished, so
there's no possibility of client programmers accidentally manipulating a
part of the class that they shouldn't.

//: C05:Stash.h
// Converted to use access control
#ifndef STASH_H
#define STASH_H
 
class Stash {
  int size;      // Size of each space
  int quantity;  // Number of storage spaces
  int next;      // Next empty space
  // Dynamically allocated array of bytes:
  unsigned char* storage;
  void inflate(int increase);
public:
  void initialize(int size);
  void cleanup();
  int add(void* element);
  void* fetch(int index);
  int count();
};
#endif // STASH_H ///:~

The inflate( ) function has
been made private because it is used only by the add( )
function and is thus part of the underlying implementation, not the interface.
This means that, sometime later, you can change the underlying implementation to
use a different system for memory management.
Other than the name of the include file,
the header above is the only thing that's been changed for this example.
The implementation file and test file are the
same.
5-5-2 - 
Modifying Stack to use access control
As a second example, here's the
Stack turned into a class. Now the nested data structure is
private, which is nice because it ensures that the client programmer will
neither have to look at it nor be able to depend on the internal representation
of the Stack: 
//: C05:Stack2.h
// Nested structs via linked list
#ifndef STACK2_H
#define STACK2_H
 
class Stack {
  struct Link {
    void* data;
    Link* next;
    void initialize(void* dat, Link* nxt);
  }* head;
public:
  void initialize();
  void push(void* dat);
  void* peek();
  void* pop();
  void cleanup();
};
#endif // STACK2_H ///:~

As before, the implementation
doesn't change and so it is not repeated here. The test, too, is
identical. The only thing that's been changed is the robustness of the
class interface. The real value of access control is to prevent you from
crossing boundaries during development. In fact, the
compiler is the only thing that knows about the protection level of class
members. There is no access control information mangled into the member name
that carries through to the linker. All the protection checking is done by the
compiler; it has vanished by
runtime.
Notice that the interface presented to
the client programmer is now truly that of a push-down
stack. It happens to be
implemented as a linked list,
but you can change that without affecting what the client programmer interacts
with, or (more importantly) a single line of client
code.
5-6 - 
Handle classes
Access control in C++ allows you to
separate interface from implementation, but the implementation hiding
is only partial. The compiler
must still see the declarations for all parts of an object in order to create
and manipulate it properly. You could imagine a programming language that
requires only the public interface of an object and allows the private
implementation to be hidden, but C++ performs type checking statically (at
compile time) as much as possible. This means that you'll learn as early
as possible if there's an error. It also means that your program is more
efficient. However, including the private implementation has two effects: the
implementation is visible even if you can't easily access it, and it can
cause needless
recompilation.
5-6-1 - 
Hiding the implementation
Some projects cannot afford to have their
implementation visible to the client programmer. It may show strategic
information in a library header file that the company doesn't want
available to competitors. You may be working on a system where
security is an issue - an encryption algorithm,
for example - and you don't want to expose any clues in a header
file that might help people to crack the code. Or you may be putting your
library in a “hostile” environment, where the
programmers will directly access the private components
anyway, using pointers and
casting. In all these situations, it's valuable to
have the actual structure compiled inside an implementation file rather than
exposed in a header
file.
5-6-2 - 
Reducing recompilation
The project manager in your programming
environment will cause a recompilation of a file if that file is touched (that
is, modified) or if another file it's dependent upon - that
is, an included header file - is touched. This means that any time you
make a change to a class, whether it's to the public interface or to the
private member declarations, you'll force a recompilation of anything that
includes that header file. This is often referred to as the
fragile
base-class problem. For a large project in its early stages this can be very
unwieldy because the underlying implementation may change often; if the project
is very big, the time for compiles can prohibit rapid
turnaround.
The technique to solve this is sometimes
called handle classes or the “Cheshire
cat”(37)
- everything about the implementation disappears except for a single
pointer, the “smile.” The pointer refers to a structure whose
definition is in the implementation file along with all the member function
definitions. Thus, as long as the interface is unchanged, the header file is
untouched. The implementation can change at will, and only the implementation
file needs to be recompiled and relinked with the project.
Here's a simple example
demonstrating the technique. The header file contains only the public interface
and a single pointer of an incompletely specified class:
//: C05:Handle.h
// Handle classes
#ifndef HANDLE_H
#define HANDLE_H
 
class Handle {
  struct Cheshire; // Class declaration only
  Cheshire* smile;
public:
  void initialize();
  void cleanup();
  int read();
  void change(int);
};
#endif // HANDLE_H ///:~

This is all the client programmer is able
to see. The line 
struct Cheshire;

is an incomplete type
specification
or a
class declaration (A
class definition includes
the body of the class.) It tells the compiler that Cheshire is a
structure name, but it doesn't give any details about the struct.
This is only enough information to create a pointer to the struct; you
can't create an object until the structure body has been provided. In this
technique, that structure body is hidden away in the implementation
file:
//: C05:Handle.cpp {O}
// Handle implementation
#include "Handle.h"
#include "../require.h"
 
// Define Handle's implementation:
struct Handle::Cheshire {
  int i;
};
 
void Handle::initialize() {
  smile = new Cheshire;
  smile->i = 0;
}
 
void Handle::cleanup() {
  delete smile;
}
 
int Handle::read() {
  return smile->i;
}
 
void Handle::change(int x) {
  smile->i = x;
} ///:~

Cheshire is a nested structure, so
it must be defined with scope
resolution:
struct Handle::Cheshire {

In Handle::initialize( ),
storage is allocated for a Cheshire structure, and in
Handle::cleanup( ) this storage is released. This storage is used in
lieu of all the data elements you'd normally put into the private
section of the class. When you compile Handle.cpp, this structure
definition is hidden away in the object file where no one can see it. If you
change the elements of Cheshire, the only file that must be recompiled is
Handle.cpp because the header file is untouched.
The use of Handle is like the use
of any class: include the header, create objects, and send
messages.
//: C05:UseHandle.cpp
//{L} Handle
// Use the Handle class
#include "Handle.h"
 
int main() {
  Handle u;
  u.initialize();
  u.read();
  u.change(1);
  u.cleanup();
} ///:~

The only thing the client programmer can
access is the public interface, so as long as the implementation is the only
thing that changes, the file above never needs recompilation. Thus, although
this isn't perfect implementation hiding, it's a big
improvement.
5-7 - 
Summary
Access control in C++ gives valuable
control to the creator of a class. The users of the class can clearly see
exactly what they can use and what to ignore. More important, though, is the
ability to ensure that no client programmer becomes dependent on any part of the
underlying implementation of a class. If you know this as the creator of the
class, you can change the underlying implementation with the knowledge that no
client programmer will be affected by the changes because they can't
access that part of the class.
When you have the ability to change the
underlying implementation, you can not only improve your design
at some later time, but you also have the freedom to
make mistakes. No matter how carefully you plan and
design, you'll make mistakes. Knowing that it's relatively safe to
make these mistakes means you'll be more experimental, you'll learn
faster, and you'll finish your project sooner.
The public interface to a class is what
the client programmer does see, so that is the most important part of the
class to get “right” during analysis and design. But even that
allows you some leeway for change. If you don't get the interface right
the first time, you can add more functions, as
long as you don't remove any that client programmers have already used in
their
code.
5-8 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
www.BruceEckel.com.
		Create a class with
public, private, and protected data members and function
members. Create an object of this class and see what kind of compiler messages
you get when you try to access all the class
members.
		Write a
struct called Lib that contains three string objects
a, b, and c. In main( ) create a Lib
object called x and assign to x.a, x.b, and x.c.
Print out the values. Now replace a, b, and c with an array
of string s[3]. Show that your code in main( ) breaks as a
result of the change.Now create a class called Libc, with
private string objects a, b, and c, and
member functions seta( ), geta( ), setb( ),
getb( ), setc( ), and getc( ) to set and get
the values. Write main( ) as before. Now change the privatestring objects a, b, and c to a private array
of string s[3]. Show that the code in main( ) does not
break as a result of the
change.
		Create a
class and a global friend function that manipulates the private
data in the
class.
		Write two
classes, each of which has a member function that takes a pointer to an object
of the other class. Create instances of both objects in main( ) and
call the aforementioned member function in each
class.
		Create three
classes. The first class contains private data, and grants friendship to
the entire second class and to a member function of the third class. In
main( ), demonstrate that all of these work
correctly.
		Create a
Hen class. Inside this, nest a Nest class. Inside Nest,
place an Egg class. Each class should have a display( )
member function. In main( ), create an instance of each class and
call the display( ) function for each
one.
		Modify Exercise
6 so that Nest and Egg each contain private data. Grant
friendship to allow the enclosing classes access to this private
data.
		Create a class
with data members distributed among numerous public, private, and
protected sections. Add a member function showMap( ) that
prints the names of each of these data members and their addresses. If possible,
compile and run this program on more than one compiler and/or computer and/or
operating system to see if there are layout differences in the
object.
		Copy the
implementation and test files for Stash in Chapter 4 so that you can
compile and test Stash.h in this
chapter.
		Place
objects of the Hen class from Exercise 6 in a Stash. Fetch them
out and print them (if you have not already done so, you will need to add
Hen::print( )).
		Copy
the implementation and test files for Stack in Chapter 4 so that you can
compile and test Stack2.h in this
chapter.
		Place
objects of the Hen class from Exercise 6 in a Stack. Fetch them
out and print them (if you have not already done so, you will need to add
Hen::print( )).
		Modify
Cheshire in Handle.cpp, and verify that your project manager
recompiles and relinks only this file, but doesn't recompile
UseHandle.cpp.
		Create
a StackOfInt class (a stack that holds ints) using the
“Cheshire cat” technique that hides the low-level data structure you
use to store the elements in a class called StackImp. Implement two
versions of StackImp: one that uses a fixed-length array of int,
and one that uses a vector<int>. Have a preset maximum size for the
stack so you don't have to worry about expanding the array in the first
version. Note that the StackOfInt.h class doesn't have to change
with
StackImp.


6 - Initialization & Cleanup
Chapter 4 made a significant
improvement in library 
use by taking all
the scattered components of a typical 
C
library and encapsulating them into a structure (an abstract data type, called a
class from now on). 
This not only provides a single unified
point of entry into a library component, but it also hides the names of the
functions within the class name. In Chapter 5, access control (implementation
hiding) was introduced. This gives the class designer a way to establish clear
boundaries for determining what the client programmer is allowed to manipulate
and what is off limits. It means the internal mechanisms of a data type's
operation are under the control and discretion of the class designer, and
it's clear to client programmers what members they can and should pay
attention to.
Together, encapsulation and access
control make a significant step in improving the ease of library use. The
concept of “new data type” they provide is better in some ways than
the existing built-in data types from C. The C++ compiler can now provide
type-checking guarantees for that data type and thus ensure a level of safety
when that data type is being used.
When it comes to safety, however,
there's a lot more the compiler can do for us than C provides. In this and
future chapters, you'll see additional features that have been engineered
into C++ that make the bugs in your program almost leap out and grab you,
sometimes before you even compile the program, but usually in the form of
compiler warnings and errors. For this reason, you will soon get used to the
unlikely-sounding scenario that a C++ program that compiles often runs right the
first time.
Two of these safety issues are
initialization and cleanup. A large segment of C bugs occur when the programmer
forgets to initialize or clean up a variable. This is especially true with C
libraries, when client programmers don't know how to initialize a
struct, or even that they must. (Libraries often do not include an
initialization function, so the client programmer is forced to initialize the
struct by hand.) Cleanup is a special problem because C programmers are
comfortable with forgetting about variables once they are finished, so any
cleaning up that may be necessary for a library's struct is often
missed.
In C++, the concept of initialization and
cleanup is essential for easy library use and to eliminate the many subtle bugs
that occur when the client programmer forgets to perform these activities. This
chapter examines the features in C++ that help guarantee proper initialization
and
cleanup.
6-1 - 
Guaranteed initialization with the constructor
Both the Stash and Stack
classes defined previously have a function called initialize( ),
which hints by its name that it should be called before using the object in any
other way. Unfortunately, this means the client programmer must ensure proper
initialization. Client programmers are prone to miss details like initialization
in their headlong rush to make your amazing library solve their problem. In C++,
initialization is too important to leave to the client programmer. The class
designer can guarantee initialization of every object by providing a special
function called the
constructor. If a class
has a constructor, the compiler automatically calls that constructor at the
point an object is created, before client programmers can get their hands on the
object. The constructor call isn't even an option for the client
programmer; it is performed by the compiler at the point the object
is defined.
The next challenge is what to name this
function. There are two issues. The first is that any name you use is something
that can potentially clash with a name you might like to use as a member in the
class. The second is that because the compiler is responsible for calling the
constructor, it must always know which function to call. The solution Stroustrup
chose seems the easiest and most logical: the name of
the constructor is the same as the name of the class. It
makes sense that such a function will be called automatically on
initialization.
Here's a simple class with a
constructor:
class X {
  int i;
public:
  X();  // Constructor
};

Now, when an object is
defined,
void f() {
  X a;
  // ...
}

the same thing happens as if a
were an int: storage is allocated for the object. But when the program
reaches the sequence point
(point of execution) where
a is defined, the constructor is called automatically. That is, the
compiler quietly inserts the call to X::X( ) for the object a
at the point of definition. Like any member function, the first (secret)
argument to the constructor is the
this pointer - the
address of the object for which it is being called. In the case of the
constructor, however, this is pointing to an un-initialized block of
memory, and it's the job of the constructor to initialize this memory
properly.
Like any function, the constructor can
have arguments to allow you to
specify how an object is created, give it initialization values, and so on.
Constructor arguments provide you with a way to guarantee that all parts of your
object are initialized to appropriate values. For example, if a class
Tree has a constructor that takes a single integer argument denoting the
height of the tree, then you must create a tree object like
this:
Tree t(12);  // 12-foot tree

If Tree(int) is your only
constructor, the compiler won't let you create an object any other way.
(We'll look at multiple constructors and different ways to call
constructors in the next chapter.)
That's really all there is to a
constructor; it's a specially named function that is called automatically
by the compiler for every object at the point of that object's creation.
Despite it's simplicity, it is exceptionally valuable because it
eliminates a large class of problems and makes the code easier to write and
read. In the preceding code fragment, for example, you don't see an
explicit function call to some initialize( ) function that is
conceptually separate from definition. In C++, definition and initialization are
unified concepts - you can't have one without the
other.
Both the constructor and destructor are
very unusual types of functions: they have no return
value. This is distinctly
different from a void return value, in which the function returns nothing
but you still have the option to make it something else. Constructors and
destructors return nothing and you don't have an option. The acts of
bringing an object into and out of the program are special, like birth and
death, and the compiler always makes the function calls itself, to make sure
they happen. If there were a return value, and if you could select your own, the
compiler would somehow have to know what to do with the return value, or the
client programmer would have to explicitly call constructors and destructors,
which would eliminate their
safety.
6-2 - 
Guaranteed cleanup with the destructor
As a C programmer, you often think about
the importance of initialization, but it's rarer to think about cleanup.
After all, what do you need to do to clean up an int? Just forget about
it. However, with libraries, just “letting go” of an object once
you're done with it is not so safe. What if it modifies some piece of
hardware, or puts something on the screen, or allocates storage on the heap? If
you just forget about it, your object never achieves closure upon its exit from
this world. In C++, cleanup is as important as initialization and is therefore
guaranteed with the
destructor.
The syntax for the destructor is similar
to that for the constructor: the class name is used for the name of the
function. However, the destructor is distinguished from the constructor by a
leading tilde (~). In addition, the destructor never has any arguments
because destruction never needs any options.
Here's the declaration for a destructor:
class Y {
public:
  ~Y();
};

The destructor is called automatically by
the compiler when the object goes out of
scope. You can see where the
constructor gets called by the point of definition of the object, but the only
evidence for a destructor call is the closing brace of the scope that surrounds
the object. Yet the destructor is still called, even when you use
goto to jump out of a
scope. (goto still exists in C++ for backward compatibility with C and
for the times when it comes in handy.) You should note that a nonlocal
goto, implemented by the
Standard C library functions setjmp( ) and
longjmp( ), doesn't cause destructors
to be called. (This is the specification, even if your compiler doesn't
implement it that way. Relying on a feature that isn't in the
specification means your code is nonportable.)
Here's an example demonstrating the
features of constructors and destructors you've seen so
far:
//: C06:Constructor1.cpp
// Constructors & destructors
#include <iostream>
using namespace std;
 
class Tree {
  int height;
public:
  Tree(int initialHeight);  // Constructor
  ~Tree();  // Destructor
  void grow(int years);
  void printsize();
};
 
Tree::Tree(int initialHeight) {
  height = initialHeight;
}
 
Tree::~Tree() {
  cout << "inside Tree destructor" << endl;
  printsize();
}
 
void Tree::grow(int years) {
  height += years;
}
 
void Tree::printsize() {
  cout << "Tree height is " << height << endl;
}
 
int main() {
  cout << "before opening brace" << endl;
  {
    Tree t(12);
    cout << "after Tree creation" << endl;
    t.printsize();
    t.grow(4);
    cout << "before closing brace" << endl;
  }
  cout << "after closing brace" << endl;
} ///:~

Here's the output of the above
program:
before opening brace
after Tree creation
Tree height is 12
before closing brace
inside Tree destructor
Tree height is 16
after closing brace

You can see that the destructor is
automatically called at the closing brace of the scope that encloses
it.
6-3 - 
Elimination of the definition
block
In C, you must
always define all the variables at the beginning of a block, after the opening
brace. This is not an uncommon requirement in programming languages, and the
reason given has often been that it's “good programming
style.” On this point, I have my suspicions. It has always seemed
inconvenient to me, as a programmer, to pop back to the beginning of a block
every time I need a new variable. I also find code more readable when the
variable definition is close to its point of
use.
Perhaps these arguments are stylistic. In
C++, however, there's a significant problem in being forced to define all
objects at the beginning of a scope. If a constructor exists, it must be called
when the object is created. However, if the constructor takes one or more
initialization arguments, how do you know you will have that initialization
information at the beginning of a scope? In the general programming situation,
you won't. Because C has no concept of private, this separation of
definition and initialization is no problem. However, C++ guarantees that when
an object is created, it is simultaneously initialized. This ensures that you
will have no uninitialized objects running around in your system. C
doesn't care; in fact, C encourages this practice by requiring you
to define variables at the beginning of a block before you necessarily have the
initialization
information(38).
In general, C++ will not allow you to
create an object before you have the initialization information for the
constructor. Because of this, the language wouldn't be feasible if you had
to define variables at the beginning of a scope. In fact, the style of the
language seems to encourage the definition of an object as close to its point of
use as possible. In C++, any rule that applies to an “object”
automatically refers to an object of a built-in type as well. This means that
any class object or variable of a built-in type can also be defined at any point
in a scope. It also means that you can wait until you have the information for a
variable before defining it, so you can always
define and initialize at the
same time:
//: C06:DefineInitialize.cpp
// Defining variables anywhere
#include "../require.h"
#include <iostream>
#include <string>
using namespace std;
 
class G {
  int i;
public:
  G(int ii);
};
 
G::G(int ii) { i = ii; }
 
int main() {
  cout << "initialization value? ";
  int retval = 0;
  cin >> retval;
  require(retval != 0);
  int y = retval + 3;
  G g(y);
} ///:~

You can see that some code is executed,
then retval is defined, initialized, and used to capture user input, and
then y and g are defined. C, on the other hand, does not allow a
variable to be defined anywhere except at the beginning of the
scope.
In general, you should define variables
as close to their point of use as possible, and always initialize them when they
are defined. (This is a stylistic suggestion for built-in types, where
initialization is optional.) This is a safety issue. By reducing the duration of
the variable's availability within the scope, you are reducing the chance
it will be misused in some other part of the scope. In addition, readability is
improved because the reader doesn't have to jump back and forth to the
beginning of the scope to know the type of a
variable.
6-3-1 - 
for loops
In C++, you will often see a for
loop counter defined right
inside the for expression:
for(int j = 0; j < 100; j++) {
    cout << "j = " << j << endl;
}
for(int i = 0; i < 100; i++)
 cout << "i = " << i << endl;

The statements above are important
special cases, which cause confusion to new C++ programmers.
The variables i and j are
defined directly inside the for expression (which you cannot do in C).
They are then available for use in the for loop. It's a very
convenient syntax because the context removes all question about the purpose of
i and j, so you don't need to use such ungainly names as
i_loop_counter for clarity.
However, some confusion may result if you
expect the lifetimes of the variables i and j to extend beyond the
scope of the for loop - they do
not(39).
Chapter 3 points out that while
and switch statements also allow the definition of objects in their
control expressions, although this usage seems far less important than with the
for loop.
Watch out for local variables that
hide
variables from the enclosing scope. In general, using the same name for a nested
variable and a variable that is global to that scope is confusing and error
prone(40).
I find small scopes an indicator of good
design. If you have several pages for a single function, perhaps you're
trying to do too much with that function. More granular functions are not only
more useful, but it's also easier to find
bugs.
6-3-2 - 
Storage allocation
A variable can now be defined at any
point in a scope, so it might seem that the storage for a variable may not be
defined until its point of definition. It's actually more likely that the
compiler will follow the practice in C of allocating all the storage for a scope
at the opening brace of that scope. It doesn't matter because, as a
programmer, you can't access the storage (a.k.a. the object) until it has
been defined(41).
Although the storage is
allocated at the beginning of
the block, the constructor call doesn't happen
until the sequence point where the object is defined because the identifier
isn't available until then. The compiler even checks to make sure that you
don't put the object definition (and thus the constructor call) where the
sequence point only
conditionally passes through it, such as in a
switch statement or
somewhere a goto can jump
past it. Uncommenting the statements in the following code will generate a
warning or an error:
//: C06:Nojump.cpp
// Can't jump past constructors
 
class X {
public:
  X();
};
 
X::X() {}
 
void f(int i) {
  if(i < 10) {
   //! goto jump1; // Error: goto bypasses init
  }
  X x1;  // Constructor called here
 jump1:
  switch(i) {
    case 1 :
      X x2;  // Constructor called here
      break;
  //! case 2 : // Error: case bypasses init
      X x3;  // Constructor called here
      break;
  }
} 
 
int main() {
  f(9);
  f(11);
}///:~

In the code above, both the goto
and the switch can potentially jump past the sequence point where a
constructor is called. That object will then be in scope even if the constructor
hasn't been called, so the compiler gives an error message. This once
again guarantees that an object
cannot be created unless it is also initialized.
All the storage allocation discussed here
happens, of course, on the stack. The storage is
allocated by the compiler by moving the stack pointer “down” (a
relative term, which may indicate an increase or decrease of the actual stack
pointer value, depending on your machine). Objects can
also be allocated on the heap using new, which is something we'll
explore further in Chapter
13.
6-4 - 
Stash with constructors and destructors
The examples from previous chapters have
obvious functions that map to constructors and destructors:
initialize( ) and cleanup( ). Here's the
Stash header using constructors and destructors:

//: C06:Stash2.h
// With constructors & destructors
#ifndef STASH2_H
#define STASH2_H
 
class Stash {
  int size;      // Size of each space
  int quantity;  // Number of storage spaces
  int next;      // Next empty space
  // Dynamically allocated array of bytes:
  unsigned char* storage;
  void inflate(int increase);
public:
  Stash(int size);
  ~Stash();
  int add(void* element);
  void* fetch(int index);
  int count();
};
#endif // STASH2_H ///:~

The only member function definitions that
are changed are initialize( ) and cleanup( ), which have
been replaced with a constructor and destructor:
//: C06:Stash2.cpp {O}
// Constructors & destructors
#include "Stash2.h"
#include "../require.h"
#include <iostream>
#include <cassert>
using namespace std;
const int increment = 100;
 
Stash::Stash(int sz) {
  size = sz;
  quantity = 0;
  storage = 0;
  next = 0;
}
 
int Stash::add(void* element) {
  if(next >= quantity) // Enough space left?
    inflate(increment);
  // Copy element into storage,
  // starting at next empty space:
  int startBytes = next * size;
  unsigned char* e = (unsigned char*)element;
  for(int i = 0; i < size; i++)
    storage[startBytes + i] = e[i];
  next++;
  return(next - 1); // Index number
}
 
void* Stash::fetch(int index) {
  require(0 <= index, "Stash::fetch (-)index");
  if(index >= next)
    return 0; // To indicate the end
  // Produce pointer to desired element:
  return &(storage[index * size]);
}
 
int Stash::count() {
  return next; // Number of elements in CStash
}
 
void Stash::inflate(int increase) {
  require(increase > 0, 
    "Stash::inflate zero or negative increase");
  int newQuantity = quantity + increase;
  int newBytes = newQuantity * size;
  int oldBytes = quantity * size;
  unsigned char* b = new unsigned char[newBytes];
  for(int i = 0; i < oldBytes; i++)
    b[i] = storage[i]; // Copy old to new
  delete [](storage); // Old storage
  storage = b; // Point to new memory
  quantity = newQuantity;
}
 
Stash::~Stash() {
  if(storage != 0) {
   cout << "freeing storage" << endl;
   delete []storage;
  }
} ///:~

You can see that the require.h
functions are being used to watch for programmer errors, instead of
assert( ). The output of a failed assert( ) is not as
useful as that of the require.h functions (which will be shown later in
the book).
Because inflate( ) is
private, the only way a require( ) could fail is if one of the other
member functions accidentally passed an incorrect value to
inflate( ). If you are certain this can't happen, you could
consider removing the require( ), but you might keep in mind that
until the class is stable, there's always the possibility that new code
might be added to the class that could cause errors. The cost of the
require( ) is low (and could be automatically removed using the
preprocessor) and the value of code robustness is high.
Notice in the following test program how
the definitions for Stash objects appear right before they are needed,
and how the initialization appears as part of the definition, in the constructor
argument list:
//: C06:Stash2Test.cpp
//{L} Stash2
// Constructors & destructors
#include "Stash2.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
 
int main() {
  Stash intStash(sizeof(int));
  for(int i = 0; i < 100; i++)
    intStash.add(&i);
  for(int j = 0; j < intStash.count(); j++)
    cout << "intStash.fetch(" << j << ") = "
         << *(int*)intStash.fetch(j)
         << endl;
  const int bufsize = 80;
  Stash stringStash(sizeof(char) * bufsize);
  ifstream in("Stash2Test.cpp");
  assure(in, " Stash2Test.cpp");
  string line;
  while(getline(in, line))
    stringStash.add((char*)line.c_str());
  int k = 0;
  char* cp;
  while((cp = (char*)stringStash.fetch(k++))!=0)
    cout << "stringStash.fetch(" << k << ") = "
         << cp << endl;
} ///:~

Also notice how the
cleanup( ) calls have been eliminated, but the
destructors are still automatically
called when intStash and stringStash go
out of scope.
One thing to be aware of in the
Stash examples: I'm being very careful to use only built-in types;
that is, those without destructors. If you were to try to copy class objects
into the Stash, you'd run into all kinds of problems and it
wouldn't work right. The Standard C++ Library can actually make correct
copies of objects into its containers, but this is a rather messy and
complicated process. In the following Stack example, you'll see
that pointers are used to sidestep this issue, and in a later chapter the
Stash will be converted so that it uses
pointers.
6-5 - 
Stack with constructors & destructors
Reimplementing the linked list
(inside Stack)with constructors and destructors shows how neatly constructors and
destructors work with new and delete. Here's the modified
header file: 
//: C06:Stack3.h
// With constructors/destructors
#ifndef STACK3_H
#define STACK3_H
 
class Stack {
  struct Link {
    void* data;
    Link* next;
    Link(void* dat, Link* nxt);
    ~Link();
  }* head;
public:
  Stack();
  ~Stack();
  void push(void* dat);
  void* peek();
  void* pop();
};
#endif // STACK3_H ///:~

Not only does Stack have a
constructor and destructor, but so does the nested struct Link:
//: C06:Stack3.cpp {O}
// Constructors/destructors
#include "Stack3.h"
#include "../require.h"
using namespace std;
 
Stack::Link::Link(void* dat, Link* nxt) {
  data = dat;
  next = nxt;
}
 
Stack::Link::~Link() { }
 
Stack::Stack() { head = 0; }
 
void Stack::push(void* dat) {
  head = new Link(dat,head);
}
 
void* Stack::peek() { 
  require(head != 0, "Stack empty");
  return head->data; 
}
 
void* Stack::pop() {
  if(head == 0) return 0;
  void* result = head->data;
  Link* oldHead = head;
  head = head->next;
  delete oldHead;
  return result;
}
 
Stack::~Stack() {
  require(head == 0, "Stack not empty");
} ///:~

The Link::Link( ) constructor
simply initializes the data and next pointers, so in
Stack::push( ) the line
head = new Link(dat,head);

not only allocates a new link (using
dynamic object creation with the keyword new, introduced in Chapter 4),
but it also neatly initializes the pointers for that link.
You may wonder why the destructor for
Link doesn't do anything - in particular, why doesn't
it delete the data pointer? There are two problems. In Chapter 4,
where the Stack was introduced, it was pointed out that you cannot
properly delete a void pointer if it points to an object (an
assertion that will be proven in Chapter 13). But in addition, if the
Link destructor deleted the data pointer, pop( ) would
end up returning a pointer to a deleted object, which would definitely be a bug.
This is sometimes referred to as the issue of
ownership: the Link and thus the
Stack only holds the pointers, but is not responsible for cleaning them
up. This means that you must be very careful that you know who is
responsible. For example, if you don't pop( ) and
delete all the pointers on the Stack, they won't get cleaned
up automatically by the Stack's destructor. This can be a sticky
issue and leads to memory leaks,
so knowing who is responsible for cleaning up an object can make the difference
between a successful program and a buggy one - that's why
Stack::~Stack( ) prints an error message if the Stack object
isn't empty upon destruction.
Because the allocation and cleanup of the
Link objects are hidden within Stack - it's part of
the underlying implementation - you don't see it happening in the
test program, although you are responsible for deleting the pointers that
come back from pop( ):
//: C06:Stack3Test.cpp
//{L} Stack3
//{T} Stack3Test.cpp
// Constructors/destructors
#include "Stack3.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
 
int main(int argc, char* argv[]) {
  requireArgs(argc, 1); // File name is argument
  ifstream in(argv[1]);
  assure(in, argv[1]);
  Stack textlines;
  string line;
  // Read file and store lines in the stack:
  while(getline(in, line))
    textlines.push(new string(line));
  // Pop the lines from the stack and print them:
  string* s;
  while((s = (string*)textlines.pop()) != 0) {
    cout << *s << endl;
    delete s; 
  }
} ///:~

In this case, all the lines in
textlines are popped and deleted, but if they weren't, you'd
get a require( ) message that would mean there was a memory
leak.
6-6 - 
Aggregate initialization
An aggregate is just what it
sounds like: a bunch of things clumped together. This definition includes
aggregates of mixed types, like structs and classes. An array is
an aggregate of a single type.
Initializing aggregates can be
error-prone and tedious. C++ aggregate
initialization makes it much
safer. When you create an object that's an aggregate, all you must do is
make an assignment, and the initialization will be taken care of by the
compiler. This assignment comes in several flavors,
depending on the type of aggregate you're dealing with, but in all cases
the elements in the assignment must be surrounded by curly braces. For an array
of built-in types this is quite simple:
int a[5] = { 1, 2, 3, 4, 5 };

If you try to give more initializers
than there are array elements, the compiler gives an
error message. But what happens if you give fewer initializers? For
example:
int b[6] = {0};

Here, the compiler will use the first
initializer for the first array element, and then use zero for all the elements
without initializers. Notice this initialization behavior doesn't occur if
you define an array without a list of initializers. So the expression above is a
succinct way to initialize an array to
zero, without using a for loop, and without any
possibility of an off-by-one error
(Depending
on the compiler, it may also be more efficient than the for
loop.)
A second shorthand for arrays is
automatic
counting,
in which you let the compiler determine the size of the array based on the
number of initializers:
int c[] = { 1, 2, 3, 4 };

Now if you decide to add another element
to the array, you simply add another initializer. If you can set your code up so
it needs to be changed in only one spot, you reduce the chance of errors during
modification. But how do you determine the size of the array? The expression
sizeof c / sizeof *c (size of the entire array
divided by the size of the first element) does the trick in a way that
doesn't need to be changed if the array size
changes(42):
for(int i = 0; i < sizeof c / sizeof *c; i++)
 c[i]++;

Because structures are also aggregates,
they can be initialized in a similar fashion. Because a C-style struct
has all of its members public, they can be assigned
directly:
struct X {
  int i;
  float f;
  char c;
};
 
X x1 = { 1, 2.2, 'c' };

If
you have an array of such objects, you can initialize them by using a nested set
of curly braces for each object:
X x2[3] = { {1, 1.1, 'a'}, {2, 2.2, 'b'} };

Here, the third object is initialized to
zero.
If any of the data members are
private (which is typically the case for a well-designed class in C++),
or even if everything's public but there's a constructor,
things are different. In the examples above, the initializers are assigned
directly to the elements of the aggregate, but constructors are a way of forcing
initialization to occur through a formal interface. Here, the constructors must
be called to perform the initialization. So if you have a struct that
looks like this,
struct Y {
  float f;
  int i;
  Y(int a);
};

You must indicate constructor calls. The
best approach is the explicit one as follows:
Y y1[] = { Y(1), Y(2), Y(3) };

You get three objects and three
constructor calls. Anytime you have a constructor, whether it's a
struct with all members public or a class with
private data members, all the initialization must go through the
constructor, even if you're using aggregate
initialization.
Here's a second example showing
multiple constructor arguments:
//: C06:Multiarg.cpp
// Multiple constructor arguments
// with aggregate initialization
#include <iostream>
using namespace std;
 
class Z {
  int i, j;
public:
  Z(int ii, int jj);
  void print();
};
 
Z::Z(int ii, int jj) {
  i = ii;
  j = jj;
}
 
void Z::print() {
  cout << "i = " << i << ", j = " << j << endl;
}
 
int main() {
  Z zz[] = { Z(1,2), Z(3,4), Z(5,6), Z(7,8) };
  for(int i = 0; i < sizeof zz / sizeof *zz; i++)
    zz[i].print();
} ///:~

Notice that it looks like an explicit
constructor is called for each object in the
array.
6-7 - 
Default constructors
A default constructor
is one that can be called with
no arguments. A default constructor is used to create a “vanilla
object,” but it's also important when the compiler is told to create
an object but isn't given any details. For example, if you take the
struct Y defined previously and use it in a definition like
this,
Y y2[2] = { Y(1) };

the compiler will complain that it cannot
find a default constructor. The second object in the array wants to be created
with no arguments, and that's where the compiler looks for a default
constructor. In fact, if you simply define an array of Y
objects,
Y y3[7];

the compiler will complain because it
must have a default constructor to initialize every object in the array.

The same problem occurs if you create an
individual object like this:
Y y4;

Remember, if you have a constructor, the
compiler ensures that construction always happens, regardless of the
situation.
The default constructor is so important
that if (and only if) there are no constructors
for a structure (struct or class), the
compiler will automatically create one for you. So this
works:
//: C06:AutoDefaultConstructor.cpp
// Automatically-generated default constructor
 
class V {
  int i;  // private
}; // No constructor
 
int main() {
  V v, v2[10];
} ///:~

If any constructors are defined, however,
and there's no default constructor, the instances of V above will
generate compile-time errors.
You might think that the
compiler-synthesized constructor should do some
intelligent initialization, like setting all the memory for the object to zero.
But it doesn't - that would add extra overhead but be out of the
programmer's control. If you want the memory to be initialized to zero,
you must do it yourself by writing the default constructor
explicitly.
Although the compiler will create a
default constructor for you, the behavior of the compiler-synthesized
constructor is rarely what you want. You should treat this feature as a safety
net, but use it sparingly. In general, you should define your constructors
explicitly and not allow the compiler to do it for
you.
6-8 - 
Summary
The seemingly elaborate mechanisms
provided by C++ should give you a strong hint about the critical importance
placed on initialization and cleanup in the language. As Stroustrup was
designing C++, one of the first observations he made about productivity in C was
that a significant portion of programming problems are caused by improper
initialization of variables. These kinds of bugs are hard to find, and similar
issues apply to improper cleanup. Because constructors and destructors allow you
to guarantee proper initialization and cleanup (the compiler will not
allow an object to be created and destroyed without the proper constructor and
destructor calls), you get complete control and safety.
Aggregate initialization is included in a
similar vein - it prevents you from making typical initialization mistakes
with aggregates of built-in types and makes your code more
succinct.
Safety during coding is a big issue in
C++. Initialization and cleanup are an important part of this, but you'll
also see other safety issues as the book
progresses.
6-9 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
www.BruceEckel.com.
		Write a simple class
called Simple with a constructor that prints something to tell you that
it's been called. In main( ) make an object of your
class.
		Add a
destructor to Exercise 1 that prints out a message to tell you that it's
been called.
		Modify
Exercise 2 so that the class contains an int member. Modify the
constructor so that it takes an int argument that it stores in the class
member. Both the constructor and destructor should print out the int
value as part of their message, so you can see the objects as they are created
and
destroyed.
		Demonstrate
that destructors are still called even when goto is used to jump out of a
loop.
		Write two
for loops that print out values from zero to 10. In the first, define the
loop counter before the for loop, and in the second, define the loop
counter in the control expression of the for loop. For the second part of
this exercise, modify the identifier in the second for loop so that it as
the same name as the loop counter for the first and see what your compiler
does.
		Modify the
Handle.h, Handle.cpp, and UseHandle.cpp files at the end of
Chapter 5 to use constructors and
destructors.
		Use
aggregate initialization to create an array of double in which you
specify the size of the array but do not provide enough elements. Print out this
array using sizeof to determine the size of the array. Now create an
array of double using aggregate initialization and automatic
counting. Print out the
array.
		Use aggregate
initialization to create an array of string objects. Create a
Stack to hold these strings and step through your array, pushing
each string on your Stack. Finally, pop the strings
off your Stack and print each
one.
		Demonstrate
automatic counting and aggregate initialization with an array of objects of the
class you created in Exercise 3. Add a member function to that class that prints
a message. Calculate the size of the array and move through it, calling your new
member
function.
		Create a
class without any constructors, and show that you can create objects with the
default constructor. Now create a nondefault constructor (one with an argument)
for the class, and try compiling again. Explain what
happened.


7 - Function Overloading & Default Arguments
One of the important features in
any programming language is the convenient use of names. 
When
you create an object (a variable), you give a name to a region of storage. A
function is a name for an action. By making up names to describe the system at
hand, you create a program that is easier for people to understand and change.
It's a lot like writing prose - the goal is to communicate with your
readers.
A problem arises when mapping the concept
of nuance in human language onto a programming language.
Often, the same word expresses a number of different meanings, depending on
context. That is, a single word has multiple meanings - it's
overloaded. This is very useful, especially when it comes to trivial
differences. You say “wash the shirt, wash the car.” It would be
silly to be forced to say, “shirt_wash the shirt, car_wash the car”
just so the listener doesn't have to make any distinction about the action
performed. Human languages have built-in redundancy, so even if you miss a few
words, you can still determine the meaning. We don't need unique
identifiers - we can deduce meaning from
context.
Most programming languages, however,
require that you have a unique
identifier for each function. If you have three different types of data that you
want to print: int, char, and float, you generally have to
create three different function names, for example, print_int( ),
print_char( ), and print_float( ). This loads extra work
on you as you write the program, and on readers as they try to understand
it.
In C++, another factor forces the
overloading of function names: the constructor. Because
the constructor's name is predetermined by the name of the class, it would
seem that there can be only one constructor. But what if you want to create an
object in more than one way? For example, suppose you build a class that can
initialize itself in a standard way and also by reading information from a file.
You need two constructors, one that takes no arguments (the default constructor)
and one that takes a string as an argument, which is the name of the file
to initialize the object. Both are constructors, so they must have the same
name: the name of the class. Thus, function overloading is essential to allow
the same function name - the constructor in this case - to be used
with different argument types.
Although function overloading is a must
for constructors, it's a general convenience and can be used with any
function, not just class member functions. In addition, function overloading
means that if you have two libraries that contain functions of the same name,
they won't conflict as long as the argument lists are different.
We'll look at all these factors in detail throughout this
chapter.
The theme of this chapter is convenient
use of function names. Function overloading allows you to use the same name for
different functions, but there's a second way to make calling a function
more convenient. What if you'd like to call the same function in different
ways? When functions have long argument lists, it can become tedious to write
(and confusing to read) the function calls when most of the arguments are the
same for all the calls. A commonly used feature in C++ is called default
arguments. A default
argument is one the compiler inserts if it isn't specified in the function
call. Thus, the calls f(“hello”), f(“hi”,
1), and f(“howdy”, 2, ‘c') can all be calls
to the same function. They could also be calls to three overloaded functions,
but when the argument lists are this similar, you'll usually want similar
behavior, which calls for a single function.
Function overloading and default
arguments really aren't very complicated. By the time you reach the end of
this chapter, you'll understand when to use them and the underlying
mechanisms that implement them during compiling and
linking.
7-1 - 
More name decoration
In Chapter 4, the concept of
name decoration
was introduced. In the
code
void f();
class X { void f(); };

the function f( ) inside the
scope of class X does not clash with the global version of
f( ). The compiler performs this scoping by manufacturing different
internal names for the global version of f( ) and
X::f( ). In Chapter 4, it was suggested that the names are simply
the class name “decorated” together with the function name, so the
internal names the compiler uses might be _f and _X_f. However, it
turns out that function name decoration involves more than the class
name.
Here's why. Suppose you want to
overload two function names
void print(char);
void print(float);

It doesn't matter whether they are
both inside a class or at the global scope. The compiler can't generate
unique internal identifiers if it uses only the scope of the function names.
You'd end up with _print in both cases. The idea of an overloaded
function is that you use the same function name, but different argument lists.
Thus, for overloading to work the compiler must decorate the function name with
the names of the argument types. The functions above,
defined at global scope, produce internal names that might look something like
_print_char and _print_float. It's worth noting there is no
standard for the way names must be decorated by the
compiler, so you will see very different results from one compiler to another.
(You can see what it looks like by telling the compiler to generate
assembly-language output.) This, of course, causes problems if you want to buy
compiled libraries for a particular compiler and linker - but  even if
name decoration were standardized, there would be other roadblocks because of
the way different compilers generate
code.
That's really all there is to
function overloading: you can use the same function name for different functions
as long as the argument lists are different. The compiler decorates the name,
the scope, and the argument lists to produce internal names for it and the
linker to
use.
7-1-1 - 
Overloading on return values
It's common to wonder, “Why
just scopes and argument lists? Why not return values?” It seems at first
that it would make sense to also decorate the return value with the internal
function name. Then you could overload on return
values, as
well:
void f();
int f();

This works fine when the compiler can
unequivocally determine the meaning from the context, as in int x =
f( );. However, in C you've always been able to call a
function and ignore the return value (that is, you can
call the function for its side effects). How can the compiler distinguish
which call is meant in this case? Possibly worse is the difficulty the reader
has in knowing which function call is meant. Overloading solely on return value
is a bit too subtle, and thus isn't allowed in
C++.
7-1-2 - 
Type-safe linkage
There is an added benefit to all of this
name decoration. A particularly sticky problem in C occurs when the client
programmer misdeclares a
function, or, worse, a function
is called without declaring it first, and the compiler infers the function
declaration from the way it is called. Sometimes this function declaration is
correct, but when it isn't, it can be a difficult bug to
find.
Because all functions must be
declared before they are used in C++, the opportunity for this problem to pop up
is greatly diminished. The C++ compiler refuses to declare a function
automatically for you, so it's likely that you will include the
appropriate header file. However, if for some reason you still manage to
misdeclare a function, either by declaring by hand or including the wrong header
file (perhaps one that is out of date), the name decoration provides a safety
net that is often referred to as type-safe linkage.
Consider the following scenario. In one
file is the definition for a function:
//: C07:Def.cpp {O}
// Function definition
void f(int) {}
///:~

In the second file, the function is
misdeclared and then called:
//: C07:Use.cpp
//{L} Def
// Function misdeclaration
void f(char);
 
int main() {
//!  f(1); // Causes a linker error
} ///:~

Even though you can see that the function
is actually f(int), the compiler doesn't know this because it was
told - through an explicit declaration - that the function is
f(char). Thus, the compilation is successful. In
C, the linker would also be successful, but not
in C++. Because the compiler decorates the names, the definition becomes
something like f_int, whereas the use of the function is f_char.
When the linker tries to resolve the reference to f_char, it can only
find f_int, and it gives you an error message. This is type-safe linkage.
Although the problem doesn't occur all that often, when it does it can be
incredibly difficult to find, especially in a large project. This is one of the
cases where you can easily find a difficult error in a C program simply by
running it through the C++
compiler.
7-2 - 
Overloading example
We can now modify earlier examples to use
function overloading. As stated before, an immediately useful place for
overloading is in constructors. You can see this in the following version of the
Stash class: 
//: C07:Stash3.h
// Function overloading
#ifndef STASH3_H
#define STASH3_H
 
class Stash {
  int size;      // Size of each space
  int quantity;  // Number of storage spaces
  int next;      // Next empty space
  // Dynamically allocated array of bytes:
  unsigned char* storage;
  void inflate(int increase);
public:
  Stash(int size); // Zero quantity
  Stash(int size, int initQuantity);
  ~Stash();
  int add(void* element);
  void* fetch(int index);
  int count();
};
#endif // STASH3_H ///:~

The first Stash( )
constructor is the same as before, but the second one has a Quantity
argument to indicate the initial number of storage places to be allocated. In
the definition, you can see that the internal value of quantity is set to
zero, along with the storage pointer. In the second constructor, the call
to inflate(initQuantity) increases quantity to the allocated
size:
//: C07:Stash3.cpp {O}
// Function overloading
#include "Stash3.h"
#include "../require.h"
#include <iostream>
#include <cassert>
using namespace std;
const int increment = 100;
 
Stash::Stash(int sz) {
  size = sz;
  quantity = 0;
  next = 0;
  storage = 0;
}
 
Stash::Stash(int sz, int initQuantity) {
  size = sz;
  quantity = 0;
  next = 0;
  storage = 0;
  inflate(initQuantity);
}
 
Stash::~Stash() {
  if(storage != 0) {
    cout << "freeing storage" << endl;
    delete []storage;
  }
}
 
int Stash::add(void* element) {
  if(next >= quantity) // Enough space left?
    inflate(increment);
  // Copy element into storage,
  // starting at next empty space:
  int startBytes = next * size;
  unsigned char* e = (unsigned char*)element;
  for(int i = 0; i < size; i++)
    storage[startBytes + i] = e[i];
  next++;
  return(next - 1); // Index number
}
 
void* Stash::fetch(int index) {
  require(0 <= index, "Stash::fetch (-)index");
  if(index >= next)
    return 0; // To indicate the end
  // Produce pointer to desired element:
  return &(storage[index * size]);
}
 
int Stash::count() {
  return next; // Number of elements in CStash
}
 
void Stash::inflate(int increase) {
  assert(increase >= 0);
  if(increase == 0) return;
  int newQuantity = quantity + increase;
  int newBytes = newQuantity * size;
  int oldBytes = quantity * size;
  unsigned char* b = new unsigned char[newBytes];
  for(int i = 0; i < oldBytes; i++)
    b[i] = storage[i]; // Copy old to new
  delete [](storage); // Release old storage
  storage = b; // Point to new memory
  quantity = newQuantity; // Adjust the size
} ///:~

When you use the first constructor no
memory is allocated for storage. The allocation happens the first time
you try to add( ) an object and any time the current block of memory
is exceeded inside add( ).
Both constructors are exercised in the
test program:
//: C07:Stash3Test.cpp
//{L} Stash3
// Function overloading
#include "Stash3.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
 
int main() {
  Stash intStash(sizeof(int));
  for(int i = 0; i < 100; i++)
    intStash.add(&i);
  for(int j = 0; j < intStash.count(); j++)
    cout << "intStash.fetch(" << j << ") = "
         << *(int*)intStash.fetch(j)
         << endl;
  const int bufsize = 80;
  Stash stringStash(sizeof(char) * bufsize, 100);
  ifstream in("Stash3Test.cpp");
  assure(in, "Stash3Test.cpp");
  string line;
  while(getline(in, line))
    stringStash.add((char*)line.c_str());
  int k = 0;
  char* cp;
  while((cp = (char*)stringStash.fetch(k++))!=0)
    cout << "stringStash.fetch(" << k << ") = "
         << cp << endl;
} ///:~

The constructor call for stringStash
uses a second argument; presumably you know something special about the
specific problem you're solving that allows you to choose an initial size
for the Stash.
7-3 - 
unions
As you've seen, the only difference
between struct and class in C++ is that struct defaults to
public and class defaults to private. A struct can
also have constructors and destructors, as you might expect. But it turns out
that a union can also have a constructor,
destructor, member functions, and even access control. You can again see the use
and benefit of overloading in the following example:
//: C07:UnionClass.cpp
// Unions with constructors and member functions
#include<iostream>
using namespace std;
 
union U {
private: // Access control too!
  int i;
  float f;
public:  
  U(int a);
  U(float b);
  ~U();
  int read_int();
  float read_float();
};
 
U::U(int a) { i = a; }
 
U::U(float b) { f = b;}
 
U::~U() { cout << "U::~U()\n"; }
 
int U::read_int() { return i; }
 
float U::read_float() { return f; }
 
int main() {
  U X(12), Y(1.9F);
  cout << X.read_int() << endl;
  cout << Y.read_float() << endl;
} ///:~

You might think from the code above that
the only difference between a
union and a class is the way the data is stored (that is, the
int and float are overlaid on the same piece of storage). However,
a union cannot be used as a base class during inheritance, which is quite
limiting from an object-oriented design standpoint (you'll learn about
inheritance in Chapter 14).
Although the member functions civilize
access to the union somewhat, there is still no way to prevent the client
programmer from selecting the wrong element type once the union is
initialized. In the example above, you could say X.read_float( )
even though it is inappropriate. However, a
“safe” union
can be encapsulated in a class. In the following example, notice how the
enum clarifies the code, and how overloading comes in handy with the
constructors:
//: C07:SuperVar.cpp
// A super-variable
#include <iostream>
using namespace std;
 
class SuperVar {
  enum {
    character,
    integer,
    floating_point
  } vartype;  // Define one
  union {  // Anonymous union
    char c;
    int i;
    float f;
  };
public:
  SuperVar(char ch);
  SuperVar(int ii);
  SuperVar(float ff);
  void print();
};
 
SuperVar::SuperVar(char ch) {
  vartype = character;
  c = ch;
}
 
SuperVar::SuperVar(int ii) {
  vartype = integer;
  i = ii;
}
 
SuperVar::SuperVar(float ff) {
  vartype = floating_point;
  f = ff;
}
 
void SuperVar::print() {
  switch (vartype) {
    case character:
      cout << "character: " << c << endl;
      break;
    case integer:
      cout << "integer: " << i << endl;
      break;
    case floating_point:
      cout << "float: " << f << endl;
      break;
  }
}
 
int main() {
  SuperVar A('c'), B(12), C(1.44F);
  A.print();
  B.print();
  C.print();
} ///:~

In the code above, the
enum has no type name (it is an
untagged enumeration). This is
acceptable if you are going to immediately define instances of the enum,
as is done here. There is no need to refer to the enum's type name
in the future, so the type name is optional.
The union
has no type name and no variable name. This is called an
anonymous union, and
creates space for the union but doesn't require accessing the
union elements with a variable name and the dot operator. For instance,
if your anonymous union is:
//: C07:AnonymousUnion.cpp
int main() {
  union { 
    int i; 
    float f; 
  };
  // Access members without using qualifiers:
  i = 12;
  f = 1.22;
} ///:~

Note that you access members of an
anonymous union just as if they were ordinary variables. The only difference is
that both variables occupy the same space. If the anonymous union is at
file scope (outside all functions and classes) then it must be declared
static so it has internal
linkage.
Although SuperVar is now safe, its
usefulness is a bit dubious because the reason for using a union in the
first place is to save space, and the addition of vartype takes up quite
a bit of space relative to the data in the union, so the savings are
effectively eliminated. There are a couple of alternatives to make this scheme
workable. If the vartype controlled more than one union instance
- if they were all the same type - then you'd only need one
for the group and it wouldn't take up more space. A more useful approach
is to have #ifdefs around all the vartype code, which can then
guarantee things are being used correctly during development and testing. For
shipping code, the extra space and time overhead can be
eliminated.
7-4 - 
Default arguments
In Stash3.h, examine the two
constructors for Stash( ). They don't seem all that different,
do they? In fact, the first constructor seems to be a special case of the second
one with the initial size set to zero. It's a bit of a waste of
effort to create and maintain two different versions of a similar
function.
C++ provides a remedy with default
arguments. A default
argument is a value given in the declaration that the compiler automatically
inserts if you don't provide a value in the function call. In the
Stash example, we can replace the two functions:

  Stash(int size); // Zero quantity
 Stash(int size, int initQuantity);

with the single
function:
  Stash(int size, int initQuantity = 0);

The Stash(int) definition is
simply removed - all that is necessary is the single Stash(int,
int) definition.
Now, the two object
definitions
  Stash A(100), B(100, 0);

will produce exactly the same results.
The identical constructor is called in both cases, but for A, the second
argument is automatically substituted by the compiler when it sees the first
argument is an int and that there is no second argument. The compiler has
seen the default argument, so it knows it can still make the function call if it
substitutes this second argument, which is what you've told it to do by
making it a default.
Default arguments are a convenience, as
function overloading is a convenience. Both features allow you to use a single
function name in different situations. The difference is that with default
arguments the compiler is substituting arguments when you don't want to
put them in yourself. The preceding example is a good place to use default
arguments instead of function overloading; otherwise you end up with two or more
functions that have similar signatures and similar behaviors. If the functions
have very different behaviors, it doesn't usually make sense to use
default arguments (for that matter, you might want to question whether two
functions with very different behaviors should have the same
name).
There are two rules you must be aware of
when using default arguments. First, only
trailing arguments may be
defaulted. That is, you can't have a default argument followed by a
non-default argument. Second, once you start using default arguments in a
particular function call, all the subsequent arguments in that function's
argument list must be defaulted (this follows from the first
rule).
Default arguments are only placed in the
declaration of a function (typically placed in a header
file). The compiler must see the
default value before it can use it. Sometimes people will place the commented
values of the default arguments in the function definition, for documentation
purposes
void fn(int x /* = 0 */) { // ...

7-4-1 - 
Placeholder arguments
Arguments in a function declaration can
be declared without identifiers. When these are used
with default arguments, it can look a bit funny. You can end up
with
void f(int x, int = 0, float = 1.1);

In C++ you don't need identifiers
in the function definition, either:
void f(int x, int, float flt) { /* ... */ }

In the function body, x and
flt can be referenced, but not the middle argument, because it has no
name. Function calls must still provide a value for the placeholder, though:
f(1) or f(1,2,3.0). This syntax allows you to put the argument in
as a placeholder without using it. The idea is that you might want to change the
function definition to use the placeholder later, without changing all the code
where the function is called. Of course, you can accomplish the same thing by
using a named argument, but if you define the argument for the function body
without using it, most compilers will give you a warning message, assuming
you've made a logical error. By intentionally leaving the argument name
out, you suppress this warning. 
More important, if you start out using a
function argument and later decide that you don't need it, you can
effectively remove it without generating warnings, and yet not disturb any
client code that was calling the previous version of the
function.
7-5 - 
Choosing overloading vs. default
arguments
Both function overloading and default
arguments provide a convenience for calling function names. However, it can seem
confusing at times to know which technique to use. For example, consider the
following tool that is designed to automatically manage blocks of
memory for you:
//: C07:Mem.h
#ifndef MEM_H
#define MEM_H
typedef unsigned char byte;
 
class Mem {
  byte* mem;
  int size;
  void ensureMinSize(int minSize);
public:
  Mem();
  Mem(int sz);
  ~Mem();
  int msize();
  byte* pointer();
  byte* pointer(int minSize);
}; 
#endif // MEM_H ///:~

A Mem object holds a block of
bytes and makes sure that you have enough storage. The default
constructor doesn't allocate any storage, and the second constructor
ensures that there is sz storage in the Mem object. The destructor
releases the storage, msize( ) tells you how many bytes there are
currently in the Mem object, and pointer( ) produces a
pointer to the starting address of the storage (Mem is a fairly low-level
tool). There's an overloaded version of pointer( ) in which
client programmers can say that they want a pointer to a block of bytes that is
at least minSize large, and the member function ensures
this.
Both the constructor and the
pointer( ) member function use the privateensureMinSize( ) member function to increase the size of the memory
block (notice that it's not safe to hold the result of
pointer( ) if the memory is resized).
Here's the implementation of the
class:
//: C07:Mem.cpp {O}
#include "Mem.h"
#include <cstring>
using namespace std;
 
Mem::Mem() { mem = 0; size = 0; }
 
Mem::Mem(int sz) {
  mem = 0;
  size = 0;
  ensureMinSize(sz); 
}
 
Mem::~Mem() { delete []mem; }
 
int Mem::msize() { return size; }
 
void Mem::ensureMinSize(int minSize) {
  if(size < minSize) {
    byte* newmem = new byte[minSize];
    memset(newmem + size, 0, minSize - size);
    memcpy(newmem, mem, size);
    delete []mem;
    mem = newmem;
    size = minSize;
  }
}
 
byte* Mem::pointer() { return mem; }
 
byte* Mem::pointer(int minSize) {
  ensureMinSize(minSize);
  return mem; 
} ///:~

You can see that
ensureMinSize( ) is the only function responsible for allocating
memory, and that it is used from the second constructor and the second
overloaded form of pointer( ). Inside ensureMinSize( ),
nothing needs to be done if the size is large enough. If new storage must
be allocated in order to make the block bigger (which is also the case when the
block is of size zero after default construction), the new “extra”
portion is set to zero using the Standard C library
function memset( ), which was introduced in Chapter 5. The
subsequent function call is to the Standard C library function
memcpy( ), which in this case copies the
existing bytes from mem to newmem (typically in an efficient
fashion). Finally, the old memory is deleted and the new memory and sizes are
assigned to the appropriate members.
The Mem class is designed to be
used as a tool within other classes to simplify their memory management (it
could also be used to hide a more sophisticated memory-management system
provided, for example, by the operating system). Appropriately, it is tested
here by creating a simple “string” class:
//: C07:MemTest.cpp
// Testing the Mem class
//{L} Mem
#include "Mem.h"
#include <cstring>
#include <iostream>
using namespace std;
 
class MyString {
  Mem* buf;
public:
  MyString();
  MyString(char* str);
  ~MyString();
  void concat(char* str);
  void print(ostream& os);
};
 
MyString::MyString() {  buf = 0; }
 
MyString::MyString(char* str) {
  buf = new Mem(strlen(str) + 1);
  strcpy((char*)buf->pointer(), str);
}
 
void MyString::concat(char* str) {
  if(!buf) buf = new Mem;
  strcat((char*)buf->pointer(
    buf->msize() + strlen(str) + 1), str);
}
 
void MyString::print(ostream& os) {
  if(!buf) return;
  os << buf->pointer() << endl;
}
 
MyString::~MyString() { delete buf; }
 
int main() {
  MyString s("My test string");
  s.print(cout);
  s.concat(" some additional stuff");
  s.print(cout);
  MyString s2;
  s2.concat("Using default constructor");
  s2.print(cout);
} ///:~

All you can do with this class is to
create a MyString, concatenate text, and print to an
ostream. The class only contains a pointer to a
Mem, but note the distinction between the default constructor, which sets
the pointer to zero, and the second constructor, which creates a Mem and
copies data into it. The advantage of the
default constructor is that you
can create, for example, a large array of empty MyString objects very
cheaply, since the size of each object is only one pointer and the only overhead
of the default constructor is that of assigning to zero. The cost of a
MyString only begins to accrue when you concatenate data; at that point
the Mem object is created if it hasn't been already. However, if
you use the default constructor and never concatenate any data, the destructor
call is still safe because calling delete for
zero is defined such that it does not try to release storage or otherwise cause
problems.
If you look at these two constructors it
might at first seem like this is a prime candidate for default arguments.
However, if you drop the default constructor and write the remaining constructor
with a default argument:
MyString(char* str = "");

everything will work correctly, but
you'll lose the previous efficiency benefit since a Mem object will
always be created. To get the efficiency back, you must modify the
constructor:
MyString::MyString(char* str) {
  if(!*str) { // Pointing at an empty string
    buf = 0;
    return;
  }
  buf = new Mem(strlen(str) + 1);
  strcpy((char*)buf->pointer(), str);
}

This means, in effect, that the default
value becomes a flag that causes a separate piece of code to be executed than if
a non-default value is used. Although it seems innocent enough with a small
constructor like this one, in general this practice can cause problems. If you
have to look for the default rather than treating it as an ordinary
value, that should be a clue that you will end up with effectively two different
functions inside a single function body: one version for the normal case and one
for the default. You might as well split it up into two distinct function bodies
and let the compiler do the selection. This results in a slight (but usually
invisible) increase in efficiency, because the extra argument isn't passed
and the extra code for the conditional isn't executed. More importantly,
you are keeping the code for two separate functions in two separate
functions rather than combining them into one using default arguments, which
will result in easier maintainability, especially if the functions are
large.
On the other hand, consider the
Mem class. If you look at the definitions of the two constructors and the
two pointer( ) functions, you can see that using default arguments
in both cases will not cause the member function definitions to change at all.
Thus, the class could easily be:
//: C07:Mem2.h
#ifndef MEM2_H
#define MEM2_H
typedef unsigned char byte;
 
class Mem {
  byte* mem;
  int size;
  void ensureMinSize(int minSize);
public:
  Mem(int sz = 0);
  ~Mem();
  int msize();
  byte* pointer(int minSize = 0);
}; 
#endif // MEM2_H ///:~

Notice that a call to
ensureMinSize(0) will always be quite efficient.
Although in both of these cases I based
some of the decision-making process on the issue of
efficiency, you must be careful not to fall into the
trap of thinking only about efficiency (fascinating as it is). The most
important issue in class design is the interface of the class (its public
members, which are available to the client programmer). If these produce a class
that is easy to use and reuse, then you have a success; you can always tune for
efficiency if necessary but the effect of a class that is designed badly because
the programmer is over-focused on efficiency issues can be dire. Your primary
concern should be that the interface makes sense to those who use it and who
read the resulting code. Notice that in MemTest.cpp the usage of
MyString does not change regardless of whether a default constructor is
used or whether the efficiency is high or
low.
7-6 - 
Summary
As a guideline, you shouldn't use a
default argument as a flag upon
which to conditionally execute code. You should instead break the function into
two or more overloaded functions if you can. A default argument should be a
value you would ordinarily put in that position. It's a value that is more
likely to occur than all the rest, so client programmers can generally ignore it
or use it only if they want to change it from the default
value.
The default argument is included to make
function calls easier, especially when those functions have many arguments with
typical values. Not only is it much easier to write the calls, it's easier
to read them, especially if the class creator can order the arguments so the
least-modified defaults appear latest in the list.
An especially important use of default
arguments is when you start out with a function with a set of arguments, and
after it's been used for a while you discover you need to add arguments.
By defaulting all the new arguments, you ensure that all client code using the
previous interface is not disturbed.

7-7 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
www.BruceEckel.com.
		Create a Text class
that contains a string object to hold the text of a file. Give it two
constructors: a default constructor and a constructor that takes a string
argument that is the name of the file to open. When the second constructor is
used, open the file and read the contents into the string member object.
Add a member function contents( ) to return the string so
(for example) it can be printed. In main( ),open a file
using Text and print the
contents.
		Create a
Message class with a constructor that takes a single string with a
default value. Create a private member string, and in the constructor
simply assign the argument string to your internal string. Create
two overloaded member functions called print( ): one that takes no
arguments and simply prints the message stored in the object, and one that takes
a string argument, which it prints in addition to the internal message.
Does it make sense to use this approach instead of the one used for the
constructor?
		Determine
how to generate assembly output with your compiler, and run experiments to
deduce the name-decoration
scheme.
		Create a
class that contains four member functions, with 0, 1, 2, and 3 int
arguments, respectively. Create a main( ) that makes an object of
your class and calls each of the member functions. Now modify the class so it
has instead a single member function with all the arguments defaulted. Does this
change your
main( )?
		Create
a function with two arguments and call it from main( ). Now make one
of the arguments a “placeholder” (no identifier) and see if your
call in main( )
changes.
		Modify
Stash3.h and Stash3.cpp to use default arguments in the
constructor. Test the constructor by making two different versions of a
Stash
object.
		Create a new
version of the Stack class (from Chapter 6) that contains the default
constructor as before, and a second constructor that takes as its arguments an
array of pointers to objects and the size of that array. This constructor should
move through the array and push each pointer onto the Stack. Test your
class with an array of
string.
		Modify
SuperVar so that there are #ifdefs around all the vartype
code as described in the section on enum. Make vartype a regular
and public enumeration (with no instance) and modify print( )
so that it requires a vartype argument to tell it what to
do.
		Implement
Mem2.h and make sure that the modified class still works with
MemTest.cpp.
		Use
class Mem to implement Stash. Note that because the implementation
is private and thus hidden from the client programmer, the test code does
not need to be
modified.
		In
class Mem, add a bool moved( ) member function that
takes the result of a call to pointer( ) and tells you whether the
pointer has moved (due to reallocation). Write a main( ) that tests
your moved( ) member function. Does it make more sense to use
something like moved( ) or to simply call pointer( )
every time you need to access the memory in
Mem?


8 - Constants
The concept of constant
(expressed by the const keyword) was created to
allow the programmer to 
draw a line
between what changes and what doesn't. This provides safety and control in
a C++ 
programming
project.
Since its origin, const has taken
on a number of different purposes. In the meantime it trickled back into the C
language where its meaning was changed. All this can seem a bit confusing at
first, and in this chapter you'll learn when, why, and how to use the
const keyword. At the end there's a discussion of volatile,
which is a near cousin to const (because they both concern change) and
has identical syntax.
The first motivation for const
seems to have been to eliminate the use of preprocessor #defines for
value substitution. It has since been put to use for pointers, function
arguments, return types, class objects and member functions. All of these have
slightly different but conceptually compatible meanings and will be looked at in
separate sections in this
chapter.
8-1 - 
Value substitution
When programming in
C, the preprocessor is liberally
used to create macros and to substitute values.
 Because the preprocessor simply
does text replacement and has no concept nor facility for type checking,
preprocessor value substitution introduces subtle problems that can be avoided
in C++ by using const values.
The typical use of the preprocessor to
substitute values for names in C looks like this:
#define BUFSIZE 100

BUFSIZE is a name that only exists
during preprocessing, therefore it doesn't occupy storage and can be
placed in a header file to provide a single value for all translation units that
use it. It's very important for code maintenance to use value substitution
instead of so-called “magic numbers.” If you
use magic numbers in your code, not only does the reader have no idea where the
numbers come from or what they represent, but if you decide to change a value,
you must perform hand editing, and you have no trail to follow to ensure you
don't miss one of your values (or accidentally change one you
shouldn't).
Most of the time, BUFSIZE will
behave like an ordinary variable, but not all the time. In addition,
there's no type information. This can hide bugs that are very difficult to
find. C++ uses const to eliminate these problems by bringing value
substitution into the domain of the compiler. Now you can say
const int bufsize = 100;

You can use bufsize anyplace where
the compiler must know the value at compile time. The compiler can use
bufsize to perform
constant folding, which means the compiler will
reduce a complicated constant expression to a simple one by performing the
necessary calculations at compile time. This is especially important in array
definitions:
char buf[bufsize];

You can use const for all the
built-in types (char, int, float, and double) and
their variants (as well as class objects, as you'll see later in this
chapter). Because of subtle bugs that the preprocessor might introduce, you
should always use const instead of #define
value
substitution.
8-1-1 - 
const in header files
To use const instead of
#define, you must be able to place const
definitions inside header files 
as you can with #define. This way, you can place
the definition for a const in a single place and distribute it to
translation units by including the header file. A const in C++ defaults
to internal linkage; that
is, it is visible only within the file where it is defined and cannot be seen at
link time by other translation units. You must always assign a value to a
const when you define it, except when you make an explicit
declaration using
extern:
extern const int bufsize;

Normally, the C++
compiler avoids creating storage for a const, but instead holds the
definition in its symbol table. When you use extern with const,
however, youforce storage to be allocated (this is also true for certain
other cases, such as taking the address of a const). Storage must be
allocated because extern says “use external linkage,” which
means that several translation units must be able to refer to the item, which
requires it to have storage. 
In the ordinary case, when extern
is not part of the definition, no storage is allocated.
When the const is used, it is simply folded in at compile
time.
The goal of never allocating storage for
a const also fails with complicated structures. Whenever the compiler
must allocate storage, constant folding is prevented (since there's no way
for the compiler to know for sure what the value of that storage is - if
it could know that, it wouldn't need to allocate the
storage).
Because the compiler cannot always avoid
allocating storage for a const, const definitions must
default to internal linkage, that is, linkage only within that particular
translation unit. Otherwise, linker errors would occur with complicated
consts because they cause storage to be allocated in multiple cpp
files. The linker would then see the same definition in multiple object files,
and complain. Because a const defaults to internal linkage, the linker
doesn't try to link those definitions across translation units, and there
are no collisions. With built-in types, which are used in the majority of cases
involving constant expressions, the compiler can always perform constant
folding.
8-1-2 - 
Safety consts
The use of
const is not limited to replacing #defines
in constant expressions. If you initialize a variable with a value that is
produced at runtime and you know it will not change for the lifetime of that
variable, it is good programming practice to make it a const so the
compiler will give you an error message if you accidentally try to change it.
Here's an example:
//: C08:Safecons.cpp
// Using const for safety
#include <iostream>
using namespace std;
 
const int i = 100;  // Typical constant
const int j = i + 10; // Value from const expr
long address = (long)&j; // Forces storage
char buf[j + 10]; // Still a const expression
 
int main() {
  cout << "type a character & CR:";
  const char c = cin.get(); // Can't change
  const char c2 = c + 'a';
  cout << c2;
  // ...
} ///:~

You can see that i is a
compile-time const, but j is calculated from i. However,
because i is a const, the calculated value
for j still comes from a constant expression and is itself a compile-time
constant. The very next line requires the address of j and therefore
forces the compiler to allocate storage for j. Yet this doesn't
prevent the use of j in the determination of the size of buf
because the compiler knows j is const and that the value is valid
even if storage was allocated to hold that value at some point in the
program.
In main( ), you see a
different kind of const in the identifier c because the value
cannot be known at compile time. This means storage is required, and the
compiler doesn't attempt to keep anything in its symbol table (the same
behavior as in C). The initialization must still happen at the point of
definition, and once the initialization occurs, the value cannot be changed. You
can see that c2 is calculated from c and also that scoping works
for consts as it does for any other type -
yet another improvement over the use of #define.
As a matter of practice, if you think a
value shouldn't change, you should make it a const. This not only
provides insurance against inadvertent changes, it also allows the compiler to
generate more efficient code by eliminating storage and memory reads.

8-1-3 - 
Aggregates
It's possible to use const
for aggregates, but you're
virtually assured that the compiler will not be sophisticated enough to keep an
aggregate in its symbol table, so storage will be allocated. In these
situations, const means “a piece of storage that cannot be
changed.” However, the value cannot be used at compile time because the
compiler is not required to know the contents of the storage at compile time. In
the following code, you can see the statements that are
illegal:
//: C08:Constag.cpp
// Constants and aggregates
const int i[] = { 1, 2, 3, 4 };
//! float f[i[3]]; // Illegal
struct S { int i, j; };
const S s[] = { { 1, 2 }, { 3, 4 } };
//! double d[s[1].j]; // Illegal
int main() {} ///:~

In an
array definition, the compiler
must be able to generate code that moves the stack pointer to accommodate the
array. In both of the illegal definitions above, the compiler complains because
it cannot find a constant expression in the array
definition.
8-1-4 - 
Differences with C
Constants were introduced in early
versions of C++ while the Standard C specification was still being finished.
Although the C committee then decided to include const in C, somehow
itcame to mean for them
“an ordinary variable that cannot be changed.” In C, a const
always occupies storage and its name is global. The C compiler cannot treat a
const as a compile-time constant. In C, if you say
const int bufsize = 100;
char buf[bufsize];

you will get an error, even though it
seems like a rational thing to do. Because bufsize occupies storage
somewhere, the C compiler cannot know the value at compile time. You can
optionally say
const int bufsize;

in C, but not in C++, and the C compiler
accepts it as a declaration indicating there is storage allocated elsewhere.
Because C defaults to external linkage
for consts, this makes
sense. C++ defaults to internal linkage
for consts so if you want
to accomplish the same thing in C++, you must explicitly change the linkage to
external using extern:
extern const int bufsize; // Declaration only

This line also works in
C.
In C++, a const doesn't
necessarily create storage. In C a const always creates
storage. Whether or not storage is reserved for a
const in C++ depends on how it is used. In general, if a const is
used simply to replace a name with a value (just as you would use a
#define), then storage doesn't have to be created for the
const. If no storage is created (this depends on the complexity of the
data type and the sophistication of the compiler), the values may be folded into
the code for greater efficiency after type checking, not before, as with
#define. If, however, you take an address of a
const (even unknowingly,
by passing it to a function that takes a reference argument) or you define it as
extern, then storage is created for the const.
In C++, a const that is outside
all functions has file scope
(i.e., it is invisible outside the file). That is, it defaults to internal
linkage. This is very different from all other identifiers in C++ (and from
const in C!) that default to external linkage. Thus, if you declare a
const of the same name in two different files and you don't take
the address or define that name as extern, the ideal C++ compiler
won't allocate storage for the const, but simply fold it into the
code. Because const has implied file scope, you
can put it in C++ header files with no conflicts at link time.
Since a const in C++ defaults to
internal linkage, you
can't just define a const in one file and reference it as an
extern in another file. To give a const external
linkage so it can be referenced
from another file, you must explicitly define it as
extern,
like this:
extern const int x = 1;

Notice that by giving it an initializer
and saying it is extern, you force storage to be created for the
const (although the compiler still has the option of doing constant
folding here). The initialization establishes this as a definition, not a
declaration. The declaration:
extern const int x;

in C++ means that the definition exists
elsewhere (again, this is not necessarily true in C). You can now see why C++
requires a const definition to have an initializer: the initializer
distinguishes a declaration from a
definition (in C it's always a definition, so no
initializer is necessary). With an externconst declaration, the compiler cannot do constant folding because it
doesn't know the value.
The C approach to const is not
very useful, and if you want to use a named value inside a constant expression
(one that must be evaluated at compile time), C almost
forces you to use #define in the
preprocessor.
8-2 - 
Pointers
Pointers can be made const. The
compiler will still endeavor to prevent storage allocation and do constant
folding when dealing with const
pointers, but these features
seem less useful in this case. More importantly, the compiler will tell you if
you attempt to change a const pointer, which adds a great deal of
safety.
When using const with pointers,
you have two options: const can be applied to what the pointer is
pointing to, or the const can be applied to the address stored in the
pointer itself. The syntax for these is a little confusing at first but becomes
comfortable with
practice.
8-2-1 - 
Pointer to const
The trick with a pointer definition, as
with any complicated definition, is to read it starting at the identifier and
work your way out. The const specifier binds to the thing it is
“closest to.” So if you want to prevent any changes to the element
you are pointing to, you write a definition like this:
const int* u;

Starting from the identifier, we read
“u is a pointer, which points to a const int.”
Here, no initialization is required because you're saying that u
can point to anything (that is, it is not const), but the thing it points
to cannot be changed.
Here's the mildly confusing part.
You might think that to make the pointer itself unchangeable, that is, to
prevent any change to the address contained inside u, you would simply
move the const to the other side of the int like
this:
int const* v;

It's not all that crazy to think
that this should read “v is a const pointer to an
int.” However, the way it actually reads is “v
is an ordinary pointer to an int that happens to be const.”
That is, the const has bound itself to the int again, and the
effect is the same as the previous definition. The fact that these two
definitions are the same is the confusing point; to prevent this confusion on
the part of your reader, you should probably stick to the first
form.
8-2-2 - 
const pointer
To make the pointer itself a
const, you must place the const specifier to the right of the
*, like this:
int d = 1;
int* const w = &d;

Now it reads: “w is a
pointer, which is const, that points to an int.” Because the
pointer itself is now the const, the compiler requires that it be given
an initial value that will be unchanged for the life of that pointer. It's
OK, however, to change what that value points to by saying 
*w = 2;

You can also make a const pointer
to a const object using either of two legal forms:
int d = 1;
const int* const x = &d;  // (1)
int const* const x2 = &d; // (2)

Now neither the pointer nor the object
can be changed.
Some people argue that the second form is
more consistent because the const is always placed to the right of what
it modifies. You'll have to decide which is clearer for your particular
coding style.
Here are the above lines in a compileable
file:
//: C08:ConstPointers.cpp
const int* u;
int const* v;
int d = 1;
int* const w = &d;
const int* const x = &d;  // (1)
int const* const x2 = &d; // (2)
int main() {} ///:~


Formatting
This book makes a point of only putting
one pointer definition on a line, and initializing each pointer at the point of
definition whenever possible. Because of this, the formatting style of
“attaching” the ‘*' to the data type is
possible:
int* u = &i;

as if int* were a discrete
type unto itself. This makes the code easier to understand, but unfortunately
that's not actually the way things work. The ‘*' in
fact binds to the identifier, not the type. It can be placed anywhere between
the type name and the identifier. So you could do this:
int *u = &i, v = 0;

which creates an int* u, as
before, and a non-pointer int v. Because readers often find this
confusing, it is best to follow the form shown in this
book.
8-2-3 - 
Assignment and type checking
C++ is very particular about type
checking, and this extends to
pointer assignments. You can
assign the address of a non-const object to a const pointer
because you're simply promising not to change something that is OK to
change. However, you can't assign the address of a const object to
a non-const pointer because then you're saying you might change the
object via the pointer. Of course, you can always use a
cast to force such an assignment, but this is bad
programming practice because you are then breaking the constness of the
object, along with any safety promised by the const. For
example:
//: C08:PointerAssignment.cpp
int d = 1;
const int e = 2;
int* u = &d; // OK -- d not const
//! int* v = &e; // Illegal -- e const
int* w = (int*)&e; // Legal but bad practice
int main() {} ///:~

Although C++ helps prevent errors it does
not protect you from yourself if you want to break the safety
mechanisms.

Character array literals
The place where strict constness
is not enforced is with character array
literals. You can
say
char* cp = "howdy";

and the compiler will accept it without
complaint. This is technically an error because a character array literal
(“howdy” in this case) is created by the compiler as a
constant character array, and the result of the quoted character array is its
starting address in memory. Modifying any of the characters in the array is a
runtime error, although not all compilers enforce this
correctly.
So character array literals are actually
constant character arrays. Of course, the compiler lets you get away with
treating them as non-const because there's so much existing C code
that relies on this. However, if you try to change the values in a character
array literal, the behavior is undefined, although it will probably work on many
machines.
If you want to be able to modify the
string, put it in an array:
char cp[] = "howdy";

Since compilers often don't enforce
the difference you won't be reminded to use this latter form and so the
point becomes rather
subtle.
8-3 - Function arguments & return values
The use of const to specify
function arguments and return
values is another place where the concept of constants
can be confusing. If you are passing objects by
value, specifying const has no meaning to the
client (it means that the passed argument cannot be modified inside the
function). If you are returning an object of a user-defined type by value as a
const, it means the returned value cannot be modified. If you are passing
and returning addresses, const is a
promise that the destination of the address will not be
changed.
8-3-1 - 
Passing by const value
You can specify that function arguments
are const when passing them by value, such as
void f1(const int i) {
  i++; // Illegal -- compile-time error
}

but what does this mean? You're
making a promise that the original value of the variable will not be changed by
the function f1( ). However, because the argument is passed by
value, you immediately make a copy of the original variable, so the promise to
the client is implicitly kept.
Inside the function, the const
takes on meaning: the argument cannot be changed. So it's really a tool
for the creator of the function, and not the caller.
To avoid confusion to the caller, you can
make the argument a const inside the
function, rather than in the argument list. You could do this with a pointer,
but a nicer syntax is achieved with the
reference, a subject that will be fully developed
in Chapter 11. Briefly, a reference is like a constant pointer that is
automatically dereferenced, so it has the effect of being an alias to an object.
To create a reference, you use the & in the definition. So the
non-confusing function definition looks like this:
void f2(int ic) {
  const int& i = ic;
  i++;  // Illegal -- compile-time error
}

Again, you'll get an error message,
but this time the constness of the local object is not part of the
function signature; it only has meaning to the implementation of the function
and therefore it's hidden from the
client.
8-3-2 - 
Returning by const
value
A similar truth holds for the return
value. If you say that a function's return value is
const:
const int g();

you are promising that the original
variable (inside the function frame) will not be modified. And again, because
you're returning it by value, it's copied so the original value
could never be modified via the return value.
At first, this can make the specification
of const seem meaningless. You can see the apparent lack of effect of
returning consts by value in this example: 
//: C08:Constval.cpp
// Returning consts by value
// has no meaning for built-in types
 
int f3() { return 1; }
const int f4() { return 1; }
 
int main() {
  const int j = f3(); // Works fine
  int k = f4(); // But this works fine too!
} ///:~

For built-in types, it doesn't
matter whether you return by value as a const, so you should avoid
confusing the client programmer and leave off the const when returning a
built-in type by value.
Returning by value as a const
becomes important when you're dealing with user-defined types. If a
function returns a class object by value as a const, the return value of
that function cannot be an lvalue (that is, it cannot be
assigned to or otherwise modified). For example:
//: C08:ConstReturnValues.cpp
// Constant return by value
// Result cannot be used as an lvalue
 
class X {
  int i;
public:
  X(int ii = 0);
  void modify();
};
 
X::X(int ii) { i = ii; }
 
void X::modify() { i++; }
 
X f5() {
  return X();
}
 
const X f6() {
  return X();
}
 
void f7(X& x) { // Pass by non-const reference
  x.modify();
}
 
int main() {
  f5() = X(1); // OK -- non-const return value
  f5().modify(); // OK
//!  f7(f5()); // Causes warning or error
// Causes compile-time errors:
//!  f7(f5());
//!  f6() = X(1);
//!  f6().modify();
//!  f7(f6());
} ///:~

f5( ) returns a
non-const X object, while f6( ) returns a const
X object. Only the non-const return value can be used as an lvalue.
Thus, it's important to use const when returning an object by value
if you want to prevent its use as an lvalue.
The reason const has no meaning
when you're returning a built-in type by value is that the compiler
already prevents it from being an lvalue (because it's always a value, and
not a variable). Only when you're returning objects of user-defined types
by value does it become an issue.
The function f7( ) takes its
argument as a non-const reference (an additional way of handling
addresses in C++ and the subject of Chapter 11). This is effectively the same as
taking a non-const pointer; it's just that the syntax is different.
The reason this won't compile in C++ is because of the creation of a
temporary.

Temporaries
Sometimes, during the evaluation of an
expression, the compiler must create temporary
objects. These are objects
like any other: they require storage and they must be constructed and destroyed.
The difference is that you never see them - the compiler is responsible
for deciding that they're needed and the details of their existence. But
there is one thing about temporaries: they're automatically
const. Because you usually won't be able to
get your hands on a temporary object, telling it to do something that will
change that temporary is almost certainly a mistake because you won't be
able to use that information. By making all temporaries automatically
const, the compiler informs you when you make that
mistake.
In the above example, f5( )
returns a non-const X object. But in the
expression:
f7(f5());

the compiler must manufacture a temporary
object to hold the return value of f5( ) so it can be passed to
f7( ). This would be fine if f7( ) took its argument by
value; then the temporary would be copied into f7( ) and it
wouldn't matter what happened to the temporary X. However,
f7( ) takes its argument by reference, which means in this
example takes the address of the temporary X. Since f7( )
doesn't take its argument by const reference, it has permission to
modify the temporary object. But the compiler knows that the temporary will
vanish as soon as the expression evaluation is complete, and thus any
modifications you make to the temporary X will be lost. By making all
temporary objects automatically const, this situation causes a
compile-time message so you don't get caught
by what would be a very difficult bug to find.
However, notice the expressions that are
legal:
  f5() = X(1);
  f5().modify();

Although these pass muster for the
compiler, they are actually problematic. f5( ) returns an X
object, and for the compiler to satisfy the above expressions it must create a
temporary to hold that return value. So in both expressions the temporary object
is being modified, and as soon as the expression is over the temporary is
cleaned up. As a result, the modifications are lost so this code is probably a
bug - but the compiler
doesn't tell you anything about it. Expressions like these are simple
enough for you to detect the problem, but when things get more complex
it's possible for a bug to slip through these cracks.
The way the constness of class
objects is preserved is shown later in the
chapter.
8-3-3 - 
Passing and returning
addresses
If you pass or return an address (either
a pointer or a reference), it's possible for the client programmer to take
it and modify the original value. If you make the pointer or reference a
const, you prevent this from happening, which may save you some grief. In
fact, whenever you're passing an address into a function, you should make
it a const if at all possible. If you don't, you're excluding
the possibility of using that function with anything that is a
const.
The choice of whether to return a pointer
or reference to a const depends on what you want to allow your client
programmer to do with it. Here's an example that demonstrates the use of
const pointers as function arguments and return values:
//: C08:ConstPointer.cpp
// Constant pointer arg/return
 
void t(int*) {}
 
void u(const int* cip) {
//!  *cip = 2; // Illegal -- modifies value
  int i = *cip; // OK -- copies value
//!  int* ip2 = cip; // Illegal: non-const
}
 
const char* v() {
  // Returns address of static character array:
  return "result of function v()";
}
 
const int* const w() {
  static int i;
  return &i;
}
 
int main() {
  int x = 0;
  int* ip = &x;
  const int* cip = &x;
  t(ip);  // OK
//!  t(cip); // Not OK
  u(ip);  // OK
  u(cip); // Also OK
//!  char* cp = v(); // Not OK
  const char* ccp = v(); // OK
//!  int* ip2 = w(); // Not OK
  const int* const ccip = w(); // OK
  const int* cip2 = w(); // OK
//!  *w() = 1; // Not OK
} ///:~

The function t( ) takes an
ordinary non-const pointer as an argument, and u( ) takes a
const pointer. Inside u( ) you can see that attempting to
modify the destination of the const pointer is illegal, but you can of
course copy the information out into a non-const variable. The compiler
also prevents you from creating a non-const pointer using the address
stored inside a const pointer.
The functions v( ) and
w( ) test return value
semantics. v( )
returns a const char* that is created from a character array
literal. This statement actually produces the address of the character array
literal, after the compiler creates it and stores it in the static storage area.
As mentioned earlier, this character array is technically a constant, which is
properly expressed by the return value of v( ).
The return value of w( )
requires that both the pointer and what it points to must be const. As
with v( ), the value returned by w( ) is valid after the
function returns only because it is
static. You never want to
return pointers to local stack variables because they will be invalid after the
function returns and the stack is cleaned up. (Another common pointer you might
return is the address of storage allocated on the heap, which is still valid
after the function returns.)
In main( ), the functions are
tested with various arguments. You can see that t( ) will accept a
non-const pointer argument, but if you try to pass it a pointer to a
const, there's no promise that t( ) will leave the
pointer's destination alone, so the compiler gives you an error message.
u( ) takes a const pointer, so it will accept both types of
arguments. Thus, a function that takes a const pointer is more general
than one that does not.
As expected, the return value of
v( ) can be assigned only to a pointer to a const. You would
also expect that the compiler refuses to assign the return value of
w( ) to a non-const pointer, and accepts a const int*
const, but it might be a bit surprising to see that it also accepts a
const int*, which is not an exact match to the return type. Once again,
because the value (which is the address contained in the pointer) is being
copied, the promise that the original variable is untouched is automatically
kept. Thus, the second const in const int* const is only
meaningful when you try to use it as an lvalue, in which case the compiler
prevents you.

Standard argument passing
In C it's very common to pass by
value, and when you want to pass an address your only choice is to use a
pointer(43).
However, neither of these approaches is preferred in C++. Instead, your first
choice when passing an argument is to pass by reference, and by const
reference at that. To the client programmer, the syntax
is identical to that of passing by value, so there's no confusion about
pointers - they don't even have to think about
pointers. For the creator of the function, passing an
address is virtually always more efficient than passing an entire class object,
and if you pass by const reference it means your function will not change
the destination of that address, so the effect from the client
programmer's point of view is exactly the same as pass-by-value (only more
efficient).
Because of the syntax of references (it
looks like pass-by-value to the caller) it's possible to pass a
temporary object to a function
that takes a const reference, whereas you can never pass a temporary
object to a function that takes a pointer - with a pointer, the address
must be explicitly taken. So passing by reference produces a new situation that
never occurs in C: a temporary, which is always const, can have its
address passed to a function. This is why, to allow temporaries to be
passed to functions by reference, the argument must be a const
reference. The following example
demonstrates this:
//: C08:ConstTemporary.cpp
// Temporaries are const
 
class X {};
 
X f() { return X(); } // Return by value
 
void g1(X&) {} // Pass by non-const reference
void g2(const X&) {} // Pass by const reference
 
int main() {
  // Error: const temporary created by f():
//!  g1(f());
  // OK: g2 takes a const reference:
  g2(f());
} ///:~

f( ) returns an object of
class X by value. That means when you
immediately take the return value of f( ) and pass it to another
function as in the calls to g1( ) and g2( ), a temporary
is created and that temporary is const. Thus, the call in
g1( ) is an error because g1( ) doesn't take a
const reference, but the call to g2( ) is
OK.
8-4 - 
Classes
This section shows the ways you can use
const with classes. You may want to create a
local const in a class to use inside constant expressions that will be
evaluated at compile time. However, the meaning of const is different
inside classes, so you must understand the options in order to create
const data members of a class.
You can also make an entire object
const (and as you've just seen, the compiler always makes temporary
objects const). But preserving the constness of an object is more
complex. The compiler can ensure the constness of a built-in type but it
cannot monitor the intricacies of a class. To guarantee the constness of
a class object, the const member function is introduced: only a
const member function
may be
called for a const object.

8-4-1 - 
const in
classes
One of the places you'd like to use
a const for constant expressions is inside classes. The typical example
is when you're creating an array inside a class
and you want to use a const instead of a
#define to establish the array size and to use in
calculations involving the array. The array size is something you'd like
to keep hidden inside the class, so if you used a name like size, for
example, you could use that name in another class without a clash. The
preprocessor treats all #defines as global from the point they are
defined, so this will not achieve the desired effect. 
You might assume that the logical choice
is to place a const inside the class. This doesn't produce the
desired result. Inside a class, const partially reverts to its meaning in
C. It allocates storage within each object and represents a value that is
initialized once and then cannot change. The use of const inside a class
means “This is constant for the lifetime of the object.” However,
each different object may contain a different value for that
constant.
Thus, when you create an ordinary
(non-static) const inside a class, you cannot give it an initial
value. This initialization must occur in the constructor, of course, but in a
special place in the constructor. Because a const must be initialized at
the point it is created, inside the main body of the constructor the
const must already be initialized. Otherwise you're left
with the choice of waiting until some point later in the constructor body, which
means the const would be un-initialized for a while. Also, there would be
nothing to keep you from changing the value of the const at various
places in the constructor body.

The constructor initializer list
The special initialization point is
called the constructor initializer
list,
and it was originally developed for use in inheritance (covered in Chapter 14).
The constructor initializer list - which, as the name implies, occurs only
in the definition of the constructor - is a list of “constructor
calls” that occur after the function argument list and a colon, but before
the opening brace of the constructor body. This is to remind you that the
initialization in the list occurs before any of the main constructor code is
executed. This is the place to put all const initializations. The proper
form for const inside a class is shown here:
//: C08:ConstInitialization.cpp
// Initializing const in classes
#include <iostream>
using namespace std;
 
class Fred {
  const int size;
public:
  Fred(int sz);
  void print();
};
 
Fred::Fred(int sz) : size(sz) {}
void Fred::print() { cout << size << endl; }
 
int main() {
  Fred a(1), b(2), c(3);
  a.print(), b.print(), c.print();
} ///:~

The form of the constructor initializer
list shown above is confusing at first because you're not used to seeing a
built-in type treated as if it has a constructor.

“Constructors” for built-in types
As the language developed and more effort
was put into making user-defined types look like
built-in types, it became apparent that there were times
when it was helpful to make built-in types look like user-defined types. In the
constructor initializer list, you can treat a built-in type as if it has a
constructor, like this:
//: C08:BuiltInTypeConstructors.cpp
#include <iostream>
using namespace std;
 
class B {
  int i;
public:
  B(int ii);
  void print();
};
 
B::B(int ii) : i(ii) {}
void B::print() { cout << i << endl; }
 
int main() {
  B a(1), b(2);
  float pi(3.14159);
  a.print(); b.print();
  cout << pi << endl;
} ///:~

This is especially critical when
initializing const data members
because
they must be initialized before the function body is entered.
It made sense to extend this
“constructor” for built-in types (which simply means assignment) to
the general case, which is why the float pi(3.14159) definition works in
the above code.
It's often useful to encapsulate a
built-in type inside a class to guarantee initialization with the constructor.
For example, here's an Integer class:
//: C08:EncapsulatingTypes.cpp
#include <iostream>
using namespace std;
 
class Integer {
  int i;
public:
  Integer(int ii = 0);
  void print();
};
 
Integer::Integer(int ii) : i(ii) {}
void Integer::print() { cout << i << ' '; }
 
int main() {
  Integer i[100];
  for(int j = 0; j < 100; j++)
    i[j].print();
} ///:~

The array of Integers in
main( ) are all automatically initialized to zero. This
initialization isn't necessarily more costly than
a for loop or memset( ). Many
compilers easily optimize this to a very fast
process.
8-4-2 - 
Compile-time constants in
classes
The above use of const is
interesting and probably useful in cases, but it does not solve the original
problem which is: “how do you make a compile-time constant inside a
class?” The answer requires the use of an additional keyword which will
not be fully introduced until Chapter 10: static. The static
keyword, in this situation, means “there's only one instance,
regardless of how many objects of the class are created,” which is
precisely what we need here: a member of a class which is constant, and which
cannot change from one object of the class to another. Thus, a
static const of a built-in type can be treated as
a compile-time constant.
There is one feature of static
const when used inside classes which is a bit unusual: you must provide the
initializer at the point of definition of the static
const. This is something that only occurs with the static const; as
much as you might like to use it in other situations it won't work because
all other data members must be initialized in the constructor or in other member
functions.
Here's an example that shows the
creation and use of a static const called size inside a class that
represents a stack of string
pointers(44):

//: C08:StringStack.cpp
// Using static const to create a 
// compile-time constant inside a class
#include <string>
#include <iostream>
using namespace std;
 
class StringStack {
  static const int size = 100;
  const string* stack[size];
  int index;
public:
  StringStack();
  void push(const string* s);
  const string* pop();
};
 
StringStack::StringStack() : index(0) {
  memset(stack, 0, size * sizeof(string*));
}
 
void StringStack::push(const string* s) {
  if(index < size)
    stack[index++] = s;
}
 
const string* StringStack::pop() {
  if(index > 0) {
    const string* rv = stack[--index];
    stack[index] = 0;
    return rv;
  }
  return 0;
}
 
string iceCream[] = {
  "pralines & cream",
  "fudge ripple",
  "jamocha almond fudge",
  "wild mountain blackberry",
  "raspberry sorbet",
  "lemon swirl",
  "rocky road",
  "deep chocolate fudge"
};
 
const int iCsz = 
  sizeof iceCream / sizeof *iceCream;
 
int main() {
  StringStack ss;
  for(int i = 0; i < iCsz; i++)
    ss.push(&iceCream[i]);
  const string* cp;
  while((cp = ss.pop()) != 0)
    cout << *cp << endl;
} ///:~

Since size is used to determine
the size of the array stack, it is indeed a compile-time constant, but
one that is hidden inside the class.
Notice that push( ) takes a
const string* as an argument, pop( ) returns a
const string*, and StringStack holds const string*.
If this were not true, you couldn't use a StringStack to hold the
pointers in iceCream. However, it also prevents you from doing anything
that will change the objects contained by StringStack. Of course, not all
containers are designed with this restriction.

The “enum hack” in old
code
In older versions of C++, staticconst was not supported inside
classes. This meant that
const was useless for constant expressions inside classes. However,
people still wanted to do this so a typical solution (usually referred to as the
“enum hack”) was to use an untagged
enum
with no instances. An
enumeration must have all its values established at compile time, it's
local to the class, and its values are available for constant expressions. Thus,
you will commonly see:
//: C08:EnumHack.cpp
#include <iostream>
using namespace std;
 
class Bunch {
  enum { size = 1000 };
  int i[size];
};
 
int main() {
  cout << "sizeof(Bunch) = " << sizeof(Bunch) 
       << ", sizeof(i[1000]) = " 
       << sizeof(int[1000]) << endl;
} ///:~

The use of enum here is guaranteed
to occupy no storage in the object, and the enumerators are all evaluated at
compile time. You can also explicitly establish the values of the
enumerators:
enum { one = 1, two = 2, three };

With integral enum types, the
compiler will continue counting from the last value, so the enumerator
three will get the value 3.
In the StringStack.cpp example
above, the line:
static const int size = 100;

would be instead:
enum { size = 100 };

Although you'll often see the
enum technique in legacy code, the static const feature was added
to the language to solve just this problem. However, there is no overwhelming
reason that you must choose static const over the enum
hack, and in this book the enum hack is used because it is supported by
more compilers at the time this book was
written.
8-4-3 - 
const objects & member
functions
Class member functions can be made
const. What does this mean? To understand, you must first grasp the
concept of const objects.
A const object is defined the same
for a user-defined type as a built-in type. For example:
const int i = 1;
const blob b(2);

Here, b is a const object
of type blob. Its constructor is called with an argument of two. For the
compiler to enforce constness, it must ensure that no data members of the
object are changed during the object's lifetime. It can easily ensure that
no public data is modified, but how is it to know which member functions will
change the data and which ones are “safe” for a const
object?
If you declare a member function
const, you tell the compiler the function can be called for a
const object. A member function that is not specifically declared
const is treated as one that will modify data members in an object, and
the compiler will not allow you to call it for a const
object.
It doesn't stop there, however.
Just claiming a member function is const doesn't guarantee
it will act that way, so the compiler forces you to reiterate the const
specification when defining the function. (The const becomes part of the
function signature, so both the compiler and linker check for constness.)
Then it enforces constness during the function definition by issuing an
error message if you try to change any members of the object or call a
non-const member function. Thus, any member function you declare
const is guaranteed to behave that way in the
definition.
To understand the syntax for declaring
const member functions, first notice that preceding the function
declaration with const means the return value is const, so that
doesn't produce the desired results. Instead, you must place the
const specifier after the argument list. For
example,
//: C08:ConstMember.cpp
class X {
  int i;
public:
  X(int ii);
  int f() const;
};
 
X::X(int ii) : i(ii) {}
int X::f() const { return i; }
 
int main() {
  X x1(10);
  const X x2(20);
  x1.f();
  x2.f();
} ///:~

Note that the const keyword must
be repeated in the definition or the compiler sees it as a different function.
Since f( ) is a const member function, if it attempts to
change i in any way or to call another member function that is not
const, the compiler flags it as an error.
You can see that a const member
function is safe to call with both const and non-const objects.
Thus, you could think of it as the most general form of a member function (and
because of this, it is unfortunate that member functions do not automatically
default to const). Any function that doesn't modify member data
should be declared as const, so it can be used with const
objects.
Here's an example that contrasts a
const and non-const member function:
//: C08:Quoter.cpp
// Random quote selection
#include <iostream>
#include <cstdlib> // Random number generator
#include <ctime> // To seed random generator
using namespace std;
 
class Quoter {
  int lastquote;
public:
  Quoter();
  int lastQuote() const;
  const char* quote();
};
 
Quoter::Quoter(){
  lastquote = -1;
  srand(time(0)); // Seed random number generator
}
 
int Quoter::lastQuote() const {
  return lastquote;
}
 
const char* Quoter::quote() {
  static const char* quotes[] = {
    "Are we having fun yet?",
    "Doctors always know best",
    "Is it ... Atomic?",
    "Fear is obscene",
    "There is no scientific evidence "
    "to support the idea "
    "that life is serious",
    "Things that make us happy, make us wise",
  };
  const int qsize = sizeof quotes/sizeof *quotes;
  int qnum = rand() % qsize;
  while(lastquote >= 0 && qnum == lastquote)
    qnum = rand() % qsize;
  return quotes[lastquote = qnum];
}
 
int main() {
  Quoter q;
  const Quoter cq;
  cq.lastQuote(); // OK
//!  cq.quote(); // Not OK; non const function
  for(int i = 0; i < 20; i++)
    cout << q.quote() << endl;
} ///:~

Neither constructors nor destructors can
be const member functions because they virtually always perform some
modification on the object during initialization and cleanup. The
quote( ) member function also cannot be const because it
modifies the data member lastquote (see the return statement).
However, lastQuote( ) makes no modifications, and so it can be
const and can be safely called for the const object
cq.

mutable: bitwise vs. logical
const
What if you want to create a const
member function, but you'd still like to change some of the data in the
object? This is sometimes referred to as the difference between bitwise
constand logical const
(also sometimes called memberwise
const).
Bitwise const means that every bit in the object is permanent, so a
bit image of the object will never change. Logical const means that,
although the entire object is conceptually constant, there may be changes on a
member-by-member basis. However, if the compiler is told that an object is
const, it will jealously guard that object to ensure bitwise
constness. To effect logical constness, there are two ways to
change a data member from within a const member
function.
The first approach is the historical one
and is called casting away
constness. It is performed
in a rather odd fashion. You take
this (the keyword that
produces the address of the current object) and cast it to a pointer to an
object of the current type. It would seem that this is already
such a pointer. However, inside a const member function it's
actually a const pointer, so by casting it to an ordinary pointer, you
remove the constness for that operation. Here's an
example:
//: C08:Castaway.cpp
// "Casting away" constness
 
class Y {
  int i;
public:
  Y();
  void f() const;
};
 
Y::Y() { i = 0; }
 
void Y::f() const {
//!  i++; // Error -- const member function
  ((Y*)this)->i++; // OK: cast away const-ness
  // Better: use C++ explicit cast syntax:
  (const_cast<Y*>(this))->i++;
}
 
int main() {
  const Y yy;
  yy.f(); // Actually changes it!
} ///:~

This approach works and you'll see
it used in legacy code, but it is not the preferred technique. The problem is
that this lack of constness is hidden away in a member function
definition, and you have no clue from the class interface that the data of the
object is actually being modified unless you have access to the source code (and
you must suspect that constness is being cast away, and look for the
cast). To put everything out in the open, you should use the
mutable keyword in the
class declaration to specify that a particular data member may be changed inside
a const object:
//: C08:Mutable.cpp
// The "mutable" keyword
 
class Z {
  int i;
  mutable int j;
public:
  Z();
  void f() const;
};
 
Z::Z() : i(0), j(0) {}
 
void Z::f() const {
//! i++; // Error -- const member function
    j++; // OK: mutable
}
 
int main() {
  const Z zz;
  zz.f(); // Actually changes it!
} ///:~

This way, the user of the class can see
from the declaration which members are likely to be modified in a const
member function.

ROMability
If an object is defined as const,
it is a candidate to be placed in read-only memory
(ROM),
which is often an important consideration in embedded systems programming.
Simply making an object const, however, is not enough - the
requirements for ROMability are much stricter. Of course, the object must be
bitwise-const, rather than logical-const. This is easy to see if
logical constness is implemented only through the mutable keyword,
but probably not detectable by the compiler if constness is cast away
inside a const member function. In addition,
		The class or
struct must have no user-defined constructors or
destructor.
		There
can be no base classes (covered in Chapter 14) or member objects with
user-defined constructors or
destructors.

The effect of a
write operation on any part of a const object of a ROMable type is
undefined. Although a suitably formed object may be placed in ROM, no objects
are ever required to be placed in
ROM.
8-5 - 
volatile
The syntax of volatile
is identical to that for const, but
volatile means “This data may change outside the knowledge of the
compiler.” Somehow, the environment is changing the data (possibly through
multitasking, multithreading or interrupts), and volatile tells the
compiler not to make any assumptions about that data, especially during
optimization.
If the compiler says, “I read this
data into a register earlier, and I haven't touched that register,”
normally it wouldn't need to read the data again. But if the data is
volatile, the compiler cannot make such an assumption because the data
may have been changed by another process,
and it must reread that data
rather than optimizing the code to remove what would normally be a redundant
read.
You create volatile objects using
the same syntax that you use to create const objects. You can also create
const volatile objects, which can't be changed by the client
programmer but instead change through some outside agency. Here is an example
that might represent a class associated with some piece of communication
hardware:
//: C08:Volatile.cpp
// The volatile keyword
 
class Comm {
  const volatile unsigned char byte;
  volatile unsigned char flag;
  enum { bufsize = 100 };
  unsigned char buf[bufsize];
  int index;
public:
  Comm();
  void isr() volatile;
  char read(int index) const;
};
 
Comm::Comm() : index(0), byte(0), flag(0) {}
 
// Only a demo; won't actually work
// as an interrupt service routine:
void Comm::isr() volatile {
  flag = 0;
  buf[index++] = byte;
  // Wrap to beginning of buffer:
  if(index >= bufsize) index = 0;
}
 
char Comm::read(int index) const {
  if(index < 0 || index >= bufsize)
    return 0;
  return buf[index];
}
 
int main() {
  volatile Comm Port;
  Port.isr(); // OK
//!  Port.read(0); // Error, read() not volatile
} ///:~

As with const, you can use
volatile for data members, member functions, and objects themselves. You
can only call volatile member functions for volatile
objects.
The reason that isr( )
can't actually be used as an interrupt service routine
is that in a member function, the address of the current
object (this) must be secretly passed, and an ISR generally wants no
arguments at all. To solve this problem, you can make isr( ) a
static member
function,
a subject covered in Chapter 10.
The syntax of volatile is
identical to const, so discussions of the two are often treated together.
The two are referred to in combination as the c-v
qualifier.
8-6 - 
Summary
The const keyword gives you the
ability to define objects, function arguments, return values and member
functions as constants, and to eliminate the preprocessor for value substitution
without losing any preprocessor benefits. All this provides a significant
additional form of type checking and safety in your programming. The use of
so-called const correctness
(the use of const
anywhere you possibly can) can be a lifesaver for projects.
Although you can ignore const and
continue to use old C coding practices, it's there to help you. Chapters
11 and on begin using references heavily, and there you'll see even more
about how critical it is to use const with function
arguments.
8-7 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from www.BruceEckel.com.

		Create three constint values, then add them together to produce a value that determines the
size of an array in an array definition. Try to compile the same code in C and
see what happens (you can generally force your C++ compiler to run as a C
compiler by using a command-line
flag).
		Prove to
yourself that the C and C++ compilers really do treat constants differently.
Create a global const and use it in a global constant expression; then
compile it under both C and
C++.
		Create example
const definitions for all the built-in types and their variants. Use
these in expressions with other consts to make new const
definitions. Make sure they compile
successfully.
		Create
a const definition in a header file, include that header file in two
.cpp files, then compile those files and link them. You should not get
any errors. Now try the same experiment with
C.
		Create a
const whose value is determined at runtime by reading the time when the
program starts (you'll have to use the <ctime> standard
header). Later in the program, try to read a second value of the time into your
const and see what
happens.
		Create a
const array of char, then try to change one of the
chars.
		Create
an extern const declaration in one file, and put a main( ) in
that file that prints the value of the extern const. Provide an extern
const definition in a second file, then compile and link the two files
together.
		Write two
pointers to const long using both forms of the declaration. Point
one of them to an array of long. Demonstrate that you can increment or
decrement the pointer, but you can't change what it points
to.
		Write a
const pointer to a double, and point it at an array of
double. Show that you can change what the pointer points to, but you
can't increment or decrement the
pointer.
		Write a
const pointer to a const object. Show that you can only read the
value that the pointer points to, but you can't change the pointer or what
it points to.
		Remove
the comment on the error-generating line of code in PointerAssignment.cpp
to see the error that your compiler
generates.
		Create a
character array literal with a pointer that points to the beginning of the
array. Now use the pointer to modify elements in the array. Does your compiler
report this as an error? Should it? If it doesn't, why do you think that
is?
		Create a
function that takes an argument by value as a const; then try to change
that argument in the function
body.
		Create a
function that takes a float by value. Inside the function, bind a
const float& to the argument, and only use the reference from then on
to ensure that the argument is not
changed.
		Modify
ConstReturnValues.cpp removing comments on the error-causing lines one at
a time, to see what error messages your compiler
generates.
		Modify
ConstPointer.cpp removing comments on the error-causing lines one at a
time, to see what error messages your compiler
generates.
		Make a
new version of ConstPointer.cpp called ConstReference.cpp which
demonstrates references instead of pointers (you may need to look forward to
Chapter 11).
		Modify
ConstTemporary.cpp removing the comment on the error-causing line to see
what error messages your compiler
generates.
		Create a
class containing both a const and a non-const float.
Initialize these using the constructor initializer
list.
		Create a class
called MyString which contains a string and has a constructor that
initializes the string, and a print( ) function. Modify
StringStack.cpp so that the container holds MyString objects, and
main( ) so it prints
them.
		Create a class
containing a const member that you initialize in the constructor
initializer list and an untagged enumeration that you use to determine an array
size.
		In
ConstMember.cpp, remove the const specifier on the member function
definition, but leave it on the declaration, to see what kind of compiler error
message you
get.
		Create a class
with both const and non-const member functions. Create
const and non-const objects of this class, and try calling the
different types of member functions for the different types of
objects.
		Create a
class with both const and non-const member functions. Try to call
a non-const member function from a const member function to see
what kind of compiler error message you
get.
		In
Mutable.cpp, remove the comment on the error-causing line to see what
sort of error message your compiler
produces.
		Modify
Quoter.cpp by making quote( ) a const member function
and lastquotemutable.
		Create
a class with a volatile data member. Create both volatile and
non-volatile member functions that modify the volatile data
member, and see what the compiler says. Create both volatile and
non-volatile objects of your class and try calling both the
volatile and non-volatile member functions to see what is
successful and what kind of error messages the compiler
produces.
		Create a
class called bird that can fly( ) and a class rock
that can't. Create a rock object, take its address, and assign that
to a void*. Now take the void*, assign it to a bird*
(you'll have to use a cast), and call fly( ) through that
pointer. Is it clear why C's permission to openly assign via a
void* (without a cast) is a “hole” in the language, which
couldn't be propagated into
C++?


9 - Inline Functions
One of the important features C++
inherits from C is efficiency. If the efficiency of C++
were dramatically 
less than C, there
would be a significant contingent of programmers who couldn't justify its
use.
In C, one of the ways to preserve
efficiency is through the use of
macros, which allow you
to make what looks like a function call without the normal
function call overhead. The
macro is implemented with the preprocessor instead of the compiler proper, and
the preprocessor replaces all macro calls directly with the macro code, so
there's no cost involved from pushing arguments, making an
assembly-language CALL, returning arguments, and performing an assembly-language
RETURN. All the work is performed by the preprocessor, so you have the
convenience and readability of a function call but it doesn't cost you
anything.
 There are two problems with the use of
preprocessor macros in C++. The first is also true with
C: a macro looks like a function call, but doesn't always act like one.
This can bury difficult-to-find bugs. The second problem is specific to C++: the
preprocessor has no permission to access class member data. This means
preprocessor macros cannot be used as class member functions.
To retain the efficiency of the
preprocessor macro, but to add the safety and class scoping of true functions,
C++ has the inline
function. In this chapter,
we'll look at the problems of preprocessor macros in C++, how these
problems are solved with inline functions, and guidelines and insights on the
way inlines
work.
9-1 - 
Preprocessor pitfalls
The key to the problems of preprocessor
macros is that you can be fooled into thinking that the behavior of the
preprocessor is the same as the behavior of the compiler. Of course, it was
intended that a macro look and act like a function call, so it's quite
easy to fall into this fiction. The difficulties begin when the subtle
differences appear.
As a simple example, consider the
following:
#define F (x) (x + 1)

Now, if a call is made to F like
this
F(1)

the preprocessor expands it, somewhat
unexpectedly, to the following:
(x) (x + 1)(1)

The problem occurs because of the gap
between F and its opening parenthesis in the macro definition. When this
gap is removed, you can actually call the macro with the
gap
F (1)

and it will still expand properly
to
(1 + 1)

The example above is fairly trivial and
the problem will make itself evident right away. The real difficulties occur
when using expressions as arguments in macro calls. 
There are two problems. The first is that
expressions may expand inside the macro so that their evaluation precedence is
different from what you expect. For example,
#define FLOOR(x,b) x>=b?0:1

Now, if expressions are used for the
arguments
if(FLOOR(a&0x0f,0x07)) // ...

the macro will expand to
if(a&0x0f>=0x07?0:1)

The precedence of & is lower
than that of >=, so the macro evaluation will surprise you. Once you
discover the problem, you can solve it by putting parentheses around everything
in the macro definition. (This is a good practice to use when creating
preprocessor macros.) Thus,
#define FLOOR(x,b) ((x)>=(b)?0:1)

Discovering the problem may be difficult,
however, and you may not find it until after you've taken the proper macro
behavior for granted. In the un-parenthesized version of the preceding macro,
most expressions will work correctly because the precedence of
>= is lower than most of the operators like +, /, -
-, and even the bitwise shift operators. So you can easily begin to
think that it works with all expressions, including those using bitwise logical
operators.
The preceding problem can be solved with
careful programming practice: parenthesize everything in a macro. However, the
second difficulty is subtler. Unlike a normal function, every time you use an
argument in a macro, that
argument is evaluated. As long as the macro is called only with ordinary
variables, this evaluation is benign, but if the evaluation of an argument has
side effects, then the results can be surprising and will definitely not mimic
function behavior.
For example, this macro determines
whether its argument falls within a certain range:
#define BAND(x) (((x)>5 && (x)<10) ? (x) : 0)

As long as you use an
“ordinary” argument, the macro works very much like a real function.
But as soon as you relax and start believing it is a real function, the
problems start. Thus:
//: C09:MacroSideEffects.cpp
#include "../require.h"
#include <fstream>
using namespace std;
 
#define BAND(x) (((x)>5 && (x)<10) ? (x) : 0)
 
int main() {
  ofstream out("macro.out");
  assure(out, "macro.out");
  for(int i = 4; i < 11; i++) {
    int a = i;
    out << "a = " << a << endl << '\t';
    out << "BAND(++a)=" << BAND(++a) << endl;
    out << "\t a = " << a << endl;
  }
} ///:~

Notice the use of all upper-case
characters in the name of the macro. This is a helpful practice because it tells
the reader this is a macro and not a function, so if there are problems, it acts
as a little reminder.
Here's the output produced by the
program, which is not at all what you would have expected from a true
function:
a = 4
  BAND(++a)=0
   a = 5
a = 5
  BAND(++a)=8
   a = 8
a = 6
  BAND(++a)=9
   a = 9
a = 7
  BAND(++a)=10
   a = 10
a = 8
  BAND(++a)=0
   a = 10
a = 9
  BAND(++a)=0
   a = 11
a = 10
  BAND(++a)=0
   a = 12

When a is four, only the first
part of the conditional occurs, so the expression is evaluated only once, and
the side effect of the macro call is that a becomes five, which is what
you would expect from a normal function call in the same situation. However,
when the number is within the band, both conditionals are tested, which results
in two increments. The result is produced by evaluating the argument again,
which results in a third increment. Once the number gets out of the band, both
conditionals are still tested so you get two increments. The side effects are
different, depending on the argument.
This is clearly not the kind of behavior
you want from a macro that looks like a function call. In this case, the obvious
solution is to make it a true function, which of course adds the extra overhead
and may reduce efficiency if you call that function a lot. Unfortunately, the
problem may not always be so obvious, and you can unknowingly get a library that
contains functions and macros mixed together, so a problem like this can hide
some very difficult-to-find bugs. For example, the
putc( ) macro in cstdio may evaluate
its second argument twice. This is specified in Standard C. Also, careless
implementations of toupper( ) as a macro may
evaluate the argument more than once, which will give you unexpected results
with
toupper(*p++).(45)
9-1-1 - 
Macros and access
Of course, careful coding and use of
preprocessor macros is required with C, and we could certainly get away with the
same thing in C++ if it weren't for one problem: a macro has no concept of
the scoping required with member functions. The
preprocessor simply performs text substitution, so you
cannot say something like
class X {
  int i;
public:
#define VAL(X::i) // Error

or anything even close. In addition,
there would be no indication of which object you were referring to. There is
simply no way to express class scope in a macro. Without some alternative to
preprocessor macros, programmers will be tempted to make some data members
public for the sake of efficiency, thus exposing the underlying
implementation and preventing changes in that implementation, as well as
eliminating the guarding that private
provides.
9-2 - 
Inline functions
In solving the C++ problem of a macro
with access to private class members, all
the problems associated with preprocessor macros were eliminated. This was done
by bringing the concept of macros under the control of the compiler where they
belong. C++ implements the macro as inline
function, which is a true
function in every sense. Any behavior you expect from an ordinary function, you
get from an inline function. The only difference is that an inline function is
expanded in place, like a preprocessor macro, so the overhead of the function
call is eliminated. Thus, you
should (almost) never use macros, only inline functions.
Any function defined within a class body
is automatically inline, but you can also make a non-class function inline by
preceding it with the inline keyword. However, for it to have any effect,
you must include the function body with the declaration, otherwise the compiler
will treat it as an ordinary function declaration. Thus,
inline int plusOne(int x);

has no effect at all other than declaring
the function (which may or may not get an inline definition sometime later). The
successful approach provides the function body:
inline int plusOne(int x) { return ++x; }

Notice that the compiler will check (as
it always does) for the proper use of the function argument list and return
value (performing any necessary conversions), something the preprocessor is
incapable of. Also, if you try to write the above as a preprocessor macro, you
get an unwanted side effect.
You'll almost always want to put
inline definitions in a header
file. When the compiler sees
such a definition, it puts the function type (the signature combined with the
return value) and the function body in its symbol table. When you use the
function, the compiler checks to ensure the call is correct and the return value
is being used correctly, and then substitutes the function body for the function
call, thus eliminating the overhead. The inline code does occupy space, but if
the function is small, this can actually take less space than the code generated
to do an ordinary function call (pushing arguments on the stack and doing the
CALL).
An inline function in a header file has a
special status, since you must include the header file containing the function
and its definition in every file where the function is used, but you
don't end up with multiple definition errors (however, the definition must
be identical in all places where the inline function is
included).
9-2-1 - 
Inlines inside classes
To define an inline function, you must
ordinarily precede the function definition with the inline keyword.
However, this is not necessary inside a class
definition. Any function you
define inside a class definition is automatically an inline. For
example:
//: C09:Inline.cpp
// Inlines inside classes
#include <iostream>
#include <string>
using namespace std;
 
class Point {
  int i, j, k;
public:
  Point(): i(0), j(0), k(0) {}
  Point(int ii, int jj, int kk)
    : i(ii), j(jj), k(kk) {}
  void print(const string& msg = "") const {
    if(msg.size() != 0) cout << msg << endl;
    cout << "i = " << i << ", "
         << "j = " << j << ", "
         << "k = " << k << endl;
  }
};
 
int main() {
  Point p, q(1,2,3);
  p.print("value of p");
  q.print("value of q");
} ///:~

Here, the two constructors and the
print( ) function are all inlines by default. Notice in
main( ) that the fact you are using inline functions is transparent,
as it should be. The logical behavior of a function must be identical regardless
of whether it's an inline (otherwise your compiler is broken). The only
difference you'll see is in performance.
Of course, the temptation is to use
inlines everywhere inside class declarations because they save you the extra
step of making the external member function definition. Keep in mind, however,
that the idea of an inline is to provide improved opportunities for
optimization by the compiler. But inlining a big
function will cause that code to be duplicated everywhere the function is
called, producing code bloat that may mitigate the speed benefit (the only
reliable course of action is to experiment to discover the effects of inlining
on your program with your
compiler).
9-2-2 - 
Access functions
One of the most important uses of inlines
inside classes is the access
function. This is a small
function that allows you to read or change part of the state of an object
- that is, an internal variable or variables. The reason inlines are so
important for access functions can be seen in the following
example:
//: C09:Access.cpp
// Inline access functions
 
class Access {
  int i;
public:
  int read() const { return i; }
  void set(int ii) { i = ii; }
};
 
int main() {
  Access A;
  A.set(100);
  int x = A.read();
} ///:~

Here, the class user never has direct
contact with the state variables inside the class, and they can be kept
private, under the
control of the class designer. All the access to the private data members
can be controlled through the member function interface. In addition, access is
remarkably efficient. Consider the read( ), for example. Without
inlines, the code generated for the call to read( ) would typically
include pushing this on
the stack and making an assembly language CALL. With most machines, the size of
this code would be larger than the code created by the inline, and the execution
time would certainly be longer.
Without inline functions, an
efficiency-conscious class designer will be tempted to simply make i a
public member, eliminating the overhead by allowing the user to directly access
i. From a design standpoint, this is disastrous
because i then becomes part of the public interface, which means the
class designer can never change it. You're stuck with an int called
i. This is a problem because you may learn sometime later that it would
be much more useful to represent the state information as a float rather
than an int, but because int i is part of the public interface,
you can't change it. Or you may want to perform some additional
calculation as part of reading or setting i, which you can't do if
it's public.If, on the other hand, you've always used
member functions to read and change the state information of an object, you can
modify the underlying representation of the object to your heart's
content.
In addition, the use of member functions
to control data members allows you to add code to the member function to detect
when that data is being changed, which can be very useful during debugging. If a
data member is public, anyone can change it anytime without you knowing
about it.

Accessors and mutators
Some people further divide the concept of
access functions into accessors (to read state
information from an object) and mutators (to
change the state of an object). In addition, function overloading may be used to
provide the same function name for both the accessor and mutator; how you call
the function determines whether you're reading or modifying state
information. Thus,
//: C09:Rectangle.cpp
// Accessors & mutators
 
class Rectangle {
  int wide, high;
public:
  Rectangle(int w = 0, int h = 0)
    : wide(w), high(h) {}
  int width() const { return wide; } // Read
  void width(int w) { wide = w; } // Set
  int height() const { return high; } // Read
  void height(int h) { high = h; } // Set
};
 
int main() {
  Rectangle r(19, 47);
  // Change width & height:
  r.height(2 * r.width());
  r.width(2 * r.height());
} ///:~

The constructor uses the constructor
initializer list (briefly introduced in Chapter 8 and covered fully in Chapter
14) to initialize the values of wide and high (using the
pseudoconstructor form for
built-in types).
You cannot have member function names
using the same identifiers as data members, so you might be tempted to
distinguish the data members with a
leading underscore. However,
identifiers with leading underscores are reserved so you should not use them.

You may choose instead to use
“get” and
“set” to indicate accessors and mutators:
//: C09:Rectangle2.cpp
// Accessors & mutators with "get" and "set"
 
class Rectangle {
  int width, height;
public:
  Rectangle(int w = 0, int h = 0)
    : width(w), height(h) {}
  int getWidth() const { return width; }
  void setWidth(int w) { width = w; }
  int getHeight() const { return height; }
  void setHeight(int h) { height = h; }
};
 
int main() {
  Rectangle r(19, 47);
  // Change width & height:
  r.setHeight(2 * r.getWidth());
  r.setWidth(2 * r.getHeight());
} ///:~

Of course, accessors and mutators
don't have to be simple pipelines to an internal variable. Sometimes they
can perform more sophisticated calculations. The following example uses the
Standard C library time functions to produce a simple Time
class:
//: C09:Cpptime.h
// A simple time class
#ifndef CPPTIME_H
#define CPPTIME_H
#include <ctime>
#include <cstring>
 
class Time {
  std::time_t t;
  std::tm local;
  char asciiRep[26];
  unsigned char lflag, aflag;
  void updateLocal() {
    if(!lflag) {
      local = *std::localtime(&t);
      lflag++;
    }
  }
  void updateAscii() {
    if(!aflag) {
      updateLocal();
      std::strcpy(asciiRep,std::asctime(&local));
      aflag++;
    }
  }
public:
  Time() { mark(); }
  void mark() {
    lflag = aflag = 0;
    std::time(&t);
  }
  const char* ascii() {
    updateAscii();
    return asciiRep;
  }
  // Difference in seconds:
  int delta(Time* dt) const {
    return int(std::difftime(t, dt->t));
  }
  int daylightSavings() {
    updateLocal();
    return local.tm_isdst;
  }
  int dayOfYear() { // Since January 1
    updateLocal();
    return local.tm_yday;
  }
  int dayOfWeek() { // Since Sunday
    updateLocal();
    return local.tm_wday;
  }
  int since1900() { // Years since 1900
    updateLocal();
    return local.tm_year;
  }
  int month() { // Since January
    updateLocal();
    return local.tm_mon;
  }
  int dayOfMonth() {
    updateLocal();
    return local.tm_mday;
  }
  int hour() { // Since midnight, 24-hour clock
    updateLocal();
    return local.tm_hour;
  }
  int minute() {
    updateLocal();
    return local.tm_min;
  }
  int second() {
    updateLocal();
    return local.tm_sec;
  }
};
#endif // CPPTIME_H ///:~

The Standard C library
functions have multiple representations for time, and
these are all part of the Time class. However, it isn't necessary
to update all of them, so instead the time_t t is
used as the base representation, and the tm local and ASCII character
representation asciiRep each have flags to indicate if they've been
updated to the current time_t. The two private functions
updateLocal( ) and updateAscii( ) check the flags and
conditionally perform the update.
The constructor calls the
mark( ) function (which the user can also call to force the object
to represent the current time), and this clears the two flags to indicate that
the local time and ASCII representation are now invalid. The
ascii( ) function calls updateAscii( ), which copies the
result of the Standard C library function
asctime( ) into a local buffer because
asctime( ) uses a static data area that is overwritten if the
function is called elsewhere. The ascii( ) function return value is
the address of this local buffer.
All the functions starting with
daylightSavings( ) use the updateLocal( ) function,
which causes the resulting composite inlines to be fairly large. This
doesn't seem worthwhile, especially considering you probably won't
call the functions very much. However, this doesn't mean all the functions
should be made non-inline. If you make other functions non-inline, at least keep
updateLocal( ) inline so that its code will be duplicated in the
non-inline functions, eliminating extra function-call overhead.
Here's a small test
program:
//: C09:Cpptime.cpp
// Testing a simple time class
#include "Cpptime.h"
#include <iostream>
using namespace std;
 
int main() {
  Time start;
  for(int i = 1; i < 1000; i++) {
    cout << i << ' ';
    if(i==0) cout << endl;
  }
  Time end;
  cout << endl;
  cout << "start = " << start.ascii();
  cout << "end = " << end.ascii();
  cout << "delta = " << end.delta(&start);
} ///:~

A Time object is created, then
some time-consuming activity is performed, then a second Time object is
created to mark the ending time. These are used to show starting, ending, and
elapsed
times.
9-3 - 
Stash & Stack with inlines
Armed with inlines, we can now convert
the Stash and Stack classes to be more
efficient:
//: C09:Stash4.h
// Inline functions
#ifndef STASH4_H
#define STASH4_H
#include "../require.h"
 
class Stash {
  int size;      // Size of each space
  int quantity;  // Number of storage spaces
  int next;      // Next empty space
  // Dynamically allocated array of bytes:
  unsigned char* storage;
  void inflate(int increase);
public:
  Stash(int sz) : size(sz), quantity(0),
    next(0), storage(0) {}
  Stash(int sz, int initQuantity) : size(sz), 
    quantity(0), next(0), storage(0) { 
    inflate(initQuantity); 
  }
  Stash::~Stash() {
    if(storage != 0) 
      delete []storage;
  }
  int add(void* element);
  void* fetch(int index) const {
    require(0 <= index, "Stash::fetch (-)index");
    if(index >= next)
      return 0; // To indicate the end
    // Produce pointer to desired element:
    return &(storage[index * size]);
  }
  int count() const { return next; }
};
#endif // STASH4_H ///:~

The small functions obviously work well
as inlines, but notice that the two largest functions are still left as
non-inlines, since inlining them probably wouldn't cause any performance
gains:
//: C09:Stash4.cpp {O}
#include "Stash4.h"
#include <iostream>
#include <cassert>
using namespace std;
const int increment = 100;
 
int Stash::add(void* element) {
  if(next >= quantity) // Enough space left?
    inflate(increment);
  // Copy element into storage,
  // starting at next empty space:
  int startBytes = next * size;
  unsigned char* e = (unsigned char*)element;
  for(int i = 0; i < size; i++)
    storage[startBytes + i] = e[i];
  next++;
  return(next - 1); // Index number
}
 
void Stash::inflate(int increase) {
  assert(increase >= 0);
  if(increase == 0) return;
  int newQuantity = quantity + increase;
  int newBytes = newQuantity * size;
  int oldBytes = quantity * size;
  unsigned char* b = new unsigned char[newBytes];
  for(int i = 0; i < oldBytes; i++)
    b[i] = storage[i]; // Copy old to new
  delete [](storage); // Release old storage
  storage = b; // Point to new memory
  quantity = newQuantity; // Adjust the size
} ///:~

Once again, the test program verifies
that everything is working correctly:
//: C09:Stash4Test.cpp
//{L} Stash4
#include "Stash4.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
 
int main() {
  Stash intStash(sizeof(int));
  for(int i = 0; i < 100; i++)
    intStash.add(&i);
  for(int j = 0; j < intStash.count(); j++)
    cout << "intStash.fetch(" << j << ") = "
         << *(int*)intStash.fetch(j)
         << endl;
  const int bufsize = 80;
  Stash stringStash(sizeof(char) * bufsize, 100);
  ifstream in("Stash4Test.cpp");
  assure(in, "Stash4Test.cpp");
  string line;
  while(getline(in, line))
    stringStash.add((char*)line.c_str());
  int k = 0;
  char* cp;
  while((cp = (char*)stringStash.fetch(k++))!=0)
    cout << "stringStash.fetch(" << k << ") = "
         << cp << endl;
} ///:~

This is the same test program that was
used before, so the output should be basically the same.
The Stack class makes even better
use of inlines: 
//: C09:Stack4.h
// With inlines
#ifndef STACK4_H
#define STACK4_H
#include "../require.h"
 
class Stack {
  struct Link {
    void* data;
    Link* next;
    Link(void* dat, Link* nxt): 
      data(dat), next(nxt) {}
  }* head;
public:
  Stack() : head(0) {}
  ~Stack() {
    require(head == 0, "Stack not empty");
  }
  void push(void* dat) {
    head = new Link(dat, head);
  }
  void* peek() const { 
    return head ? head->data : 0;
  }
  void* pop() {
    if(head == 0) return 0;
    void* result = head->data;
    Link* oldHead = head;
    head = head->next;
    delete oldHead;
    return result;
  }
};
#endif // STACK4_H ///:~

Notice that the Link destructor
that was present but empty in the previous version of Stack has been
removed. In pop( ), the expression delete oldHead simply
releases the memory used by that Link (it does not destroy the data
object pointed to by the Link).
Most of the functions inline quite nicely
and obviously, especially for Link. Even pop( ) seems
legitimate, although anytime you have conditionals or local variables it's
not clear that inlines will be that beneficial. Here, the function is small
enough that it probably won't hurt anything.
If all your functions are inlined,
using the library becomes quite simple because there's no linking
necessary, as you can see in the test example (notice that there's no
Stack4.cpp):
//: C09:Stack4Test.cpp
//{T} Stack4Test.cpp
#include "Stack4.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
 
int main(int argc, char* argv[]) {
  requireArgs(argc, 1); // File name is argument
  ifstream in(argv[1]);
  assure(in, argv[1]);
  Stack textlines;
  string line;
  // Read file and store lines in the stack:
  while(getline(in, line))
    textlines.push(new string(line));
  // Pop the lines from the stack and print them:
  string* s;
  while((s = (string*)textlines.pop()) != 0) {
    cout << *s << endl;
    delete s; 
  }
} ///:~

People will sometimes write classes with
all inline functions so that the whole class will be in the header file
(you'll see in this book that I step over the line myself). During program
development this is probably harmless, although sometimes it can make for longer
compilations. Once the program stabilizes a bit, you'll probably want to
go back and make functions non-inline where
appropriate.
9-4 - 
Inlines & the compiler
To understand when inlining
is effective, it's helpful to know what the
compiler does when it encounters an inline. As with any function, the compiler
holds the function type
(that is, the function prototype including the name and argument types, in
combination with the function return value) in its symbol table. In addition,
when the compiler sees that the inline's function type and the
function body parses without error, the code for the function body is also
brought into the symbol table. Whether the code is stored in source form,
compiled assembly instructions, or some other representation is up to the
compiler.
When you make a call to an inline
function, the compiler first ensures that the call can be correctly made. That
is, all the argument types must either be the exact types in the
function's argument list, or the compiler must be able to make a type
conversion to the proper types and the return value must be the correct type (or
convertible to the correct type) in the destination expression. This, of course,
is exactly what the compiler does for any function and is markedly different
from what the preprocessor does because the preprocessor cannot check types or
make conversions.
If all the function type information fits
the context of the call, then the inline code is substituted directly for the
function call, eliminating the call overhead and allowing for further
optimizations by the compiler. Also, if the inline is a member function, the
address of the object (this) is put in the appropriate place(s), which of
course is another action the preprocessor is unable to
perform.
9-4-1 - 
Limitations
There are two situations in which the
compiler cannot perform inlining. In these cases, it simply reverts to the
ordinary form of a function by taking the inline definition and creating storage
for the function just as it does for a non-inline. If it must do this in
multiple translation units (which would normally cause a multiple definition
error), the linker is told to ignore the multiple definitions.
The compiler cannot perform inlining if
the function is too complicated. This depends upon the particular compiler, but
at the point most compilers give up, the inline probably wouldn't gain you
any efficiency. In general, any sort of looping is considered too complicated to
expand as an inline, and if you think about it, looping probably entails much
more time inside the function than what is required for the function call
overhead. If the function is just a collection of simple statements, the
compiler probably won't have any trouble inlining it, but if there are a
lot of statements, the overhead of the function call will be much less than the
cost of executing the body. And remember, every time you call a big inline
function, the entire function body is inserted in place of each call, so you can
easily get code bloat without
any noticeable performance improvement. (Note that some of the examples in this
book may exceed reasonable inline sizes in favor of conserving screen real
estate.)
The compiler also cannot perform inlining
if the address of the function
is taken implicitly or explicitly. If the compiler must produce an address, then
it will allocate storage for the function code and use the resulting address.
However, where an address is not required, the compiler will probably still
inline the code.
It is important to understand that an
inline is just a suggestion to the compiler; the compiler is not forced to
inline anything at all. A good compiler will inline small, simple functions
while intelligently ignoring inlines that are too complicated. This will give
you the results you want - the true semantics of a function call with the
efficiency of a macro.
9-4-2 - 
Forward references
If you're imagining what the
compiler is doing to implement inlines, you can confuse yourself into thinking
there are more limitations than actually exist. In particular, if an inline
makes a forward reference
to a function that hasn't yet been declared in the
class (whether that function is inline or not), it can seem like the compiler
won't be able to handle it:
//: C09:EvaluationOrder.cpp
// Inline evaluation order
 
class Forward {
  int i;
public:
  Forward() : i(0) {}
  // Call to undeclared function:
  int f() const { return g() + 1; }
  int g() const { return i; }
};
 
int main() {
  Forward frwd;
  frwd.f();
} ///:~

In f( ), a call is made to
g( ), although g( ) has not yet been declared. This
works because the language definition states that no inline functions in a class
shall be evaluated until the closing brace of the class
declaration.
Of course, if g( ) in turn
called f( ), you'd end up with a set of recursive calls, which
are too complicated for the compiler to inline. (Also, you'd have to
perform some test in f( ) or g( ) to force one of them
to “bottom out,” or the recursion would be
infinite.)
9-4-3 - 
Hidden activities in constructors & destructors
Constructors
and destructors
are two places where you can be
fooled into thinking that an inline
is more efficient than it
actually is. Constructors and destructors may have hidden activities, because
the class can contain subobjects whose constructors and destructors must be
called. These subobjects may be member objects, or they may exist because of
inheritance (covered in Chapter 14). As an example of a class with member
objects:
//: C09:Hidden.cpp
// Hidden activities in inlines
#include <iostream>
using namespace std;
 
class Member {
  int i, j, k;
public:
  Member(int x = 0) : i(x), j(x), k(x) {}
  ~Member() { cout << "~Member" << endl; }
};
 
class WithMembers {
  Member q, r, s; // Have constructors
  int i;
public:
  WithMembers(int ii) : i(ii) {} // Trivial?
  ~WithMembers() {
    cout << "~WithMembers" << endl;
  }
};
 
int main() {
  WithMembers wm(1);
} ///:~

The constructor for Member is
simple enough to inline, since there's nothing special going on - no
inheritance or member objects are causing extra hidden activities. But in
class WithMembers there's more going on than meets the eye. The
constructors and destructors for the member objects q, r, and
s are being called automatically, and those constructors and
destructors are also inline, so the difference is significant from normal member
functions. This doesn't necessarily mean that you should always make
constructor and destructor definitions non-inline; there are cases in which it
makes sense. Also, when you're making an initial “sketch” of a
program by quickly writing code, it's often more
convenient to use inlines. But if you're concerned
about efficiency, it's a place to
look.
9-5 - 
Reducing clutter
In a book like this, the simplicity and
terseness of putting inline definitions inside classes is very useful because
more fits on a page or screen (in a seminar). However, Dan
Saks(46)
has pointed out that in a real project this has the effect of needlessly
cluttering the class interface and thereby making the class harder to use. He
refers to member functions defined within classes using the Latin in situ
(in place) and maintains that
all definitions should be placed outside the class to keep the interface clean.
Optimization, he argues, is a separate issue. If you want to optimize, use the
inline keyword. Using
this approach, the earlier Rectangle.cpp example
becomes:
//: C09:Noinsitu.cpp
// Removing in situ functions
 
class Rectangle {
  int width, height;
public:
  Rectangle(int w = 0, int h = 0);
  int getWidth() const;
  void setWidth(int w);
  int getHeight() const;
  void setHeight(int h);
};
 
inline Rectangle::Rectangle(int w, int h)
  : width(w), height(h) {}
 
inline int Rectangle::getWidth() const {
  return width;
}
 
inline void Rectangle::setWidth(int w) {
  width = w;
}
 
inline int Rectangle::getHeight() const {
  return height;
}
 
inline void Rectangle::setHeight(int h) {
  height = h;
}
 
int main() {
  Rectangle r(19, 47);
  // Transpose width & height:
  int iHeight = r.getHeight();
  r.setHeight(r.getWidth());
  r.setWidth(iHeight);
} ///:~

Now if you want to compare the effect of
inline functions to non-inline functions, you can simply remove the
inline keyword. (Inline functions should normally be put in header files,
however, while non-inline functions must reside in their own translation unit.)
If you want to put the functions into documentation, it's a simple
cut-and-paste operation. In situ functions require more work and have
greater potential for errors. Another argument for this approach is that you can
always produce a consistent formatting style for function definitions, something
that doesn't always occur with in situ
functions.
9-6 - 
More preprocessor features
Earlier, I said that you almost
always want to use inline functions instead of preprocessor macros. The
exceptions are when you need to use three special features in the C preprocessor
(which is also the C++ preprocessor):
stringizing, string
concatenation, and token
pasting. Stringizing, introduced
earlier in the book, is performed with the # directive and allows you to
take an identifier and turn it into a character array. String concatenation
takes place when two adjacent character arrays have no intervening punctuation,
in which case they are combined. These two features are especially useful when
writing debug code. Thus,
#define DEBUG(x) cout << #x " = " << x << endl

This prints the value of any variable.
You can also get a trace that prints out the statements as they
execute:
#define TRACE(s) cerr << #s << endl; s

The #s stringizes the statement
for output, and the second s reiterates the statement so it is executed.
Of course, this kind of thing can cause problems, especially in one-line
for loops:
for(int i = 0; i < 100; i++)
 TRACE(f(i));

Because there are actually two statements
in the TRACE( ) macro, the one-line for loop executes only
the first one. The solution is to replace the semicolon with a comma in the
macro.
9-6-1 - 
Token pasting
Token pasting, implemented with the
## directive, is very useful when you are manufacturing code. It allows
you to take two identifiers and paste them together to automatically create a
new identifier. For example,
#define FIELD(a) char* a##_string; int a##_size
class Record {
  FIELD(one);
  FIELD(two);
  FIELD(three);
  // ...
};

Each call to the FIELD( )
macro creates an identifier to hold a character array and another to hold the
length of that array. Not only is it easier to read, it can eliminate coding
errors and make maintenance easier.

9-7 - 
Improved error checking
The
require.h functions have
been used up to this point without defining them (although
assert( ) has also been used to help detect
programmer errors where it's appropriate). Now it's time to define
this header file. Inline
functions are convenient here because they allow everything to be placed in a
header file, which simplifies the process of using the package. You just include
the header file and you don't need to worry about linking an
implementation file.
You should note that exceptions
(presented in detail in Volume 2 of this book) provide a much more effective way
of handling many kinds of errors - especially those that you'd like
to recover from - instead of just halting the program. The conditions that
require.h handles, however, are ones which prevent the continuation of
the program, such as if the user doesn't provide enough command-line
arguments or if a file cannot be opened. Thus, it's acceptable that they
call the Standard C Library function
exit( ).
The following header file is placed in
the book's root directory so it's easily accessed from all
chapters.
//: :require.h
// Test for error conditions in programs
// Local "using namespace std" for old compilers
#ifndef REQUIRE_H
#define REQUIRE_H
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <string>
 
inline void require(bool requirement, 
  const std::string& msg = "Requirement failed"){
  using namespace std;
  if (!requirement) {
    fputs(msg.c_str(), stderr);
    fputs("\n", stderr);
    exit(1);
  }
}
 
inline void requireArgs(int argc, int args, 
  const std::string& msg = 
    "Must use %d arguments") {
  using namespace std;
   if (argc != args + 1) {
     fprintf(stderr, msg.c_str(), args);
     fputs("\n", stderr);
     exit(1);
   }
}
 
inline void requireMinArgs(int argc, int minArgs,
  const std::string& msg =
    "Must use at least %d arguments") {
  using namespace std;
  if(argc < minArgs + 1) {
    fprintf(stderr, msg.c_str(), minArgs);
    fputs("\n", stderr);
    exit(1);
  }
}
 
inline void assure(std::ifstream& in, 
  const std::string& filename = "") {
  using namespace std;
  if(!in) {
    fprintf(stderr, "Could not open file %s\n",
      filename.c_str());
    exit(1);
  }
}
 
inline void assure(std::ofstream& out, 
  const std::string& filename = "") {
  using namespace std;
  if(!out) {
    fprintf(stderr, "Could not open file %s\n", 
      filename.c_str());
    exit(1);
  }
}
#endif // REQUIRE_H ///:~

The default values provide reasonable
messages that can be changed if necessary.
You'll notice that instead of using
char* arguments, const string& arguments are used. This allows
both char* and strings as arguments to these functions, and thus
is more generally useful (you may want to follow this form in your own
coding).
In the definitions for
requireArgs( ) and requireMinArgs( ), one is added to
the number of arguments you need on the command line because argc always
includes the name of the program being executed as argument zero, and so always
has a value that is one more than the number of actual arguments on the command
line.
Note the use of local “using
namespace std” declarations within each function. This is because some
compilers at the time of this writing incorrectly did not include the C standard
library functions in namespace std, so explicit
qualification would cause a compile-time error. The local declaration allows
require.h to work with both correct and incorrect libraries without
opening up the namespace std for anyone who includes this header
file.
Here's a simple program to test
require.h:
//: C09:ErrTest.cpp
//{T} ErrTest.cpp
// Testing require.h
#include "../require.h"
#include <fstream>
using namespace std;
 
int main(int argc, char* argv[]) {
  int i = 1;
  require(i, "value must be nonzero");
  requireArgs(argc, 1);
  requireMinArgs(argc, 1);
  ifstream in(argv[1]);
  assure(in, argv[1]); // Use the file name
  ifstream nofile("nofile.xxx");
  // Fails:
//!  assure(nofile); // The default argument
  ofstream out("tmp.txt");
  assure(out);
} ///:~

You
might be tempted to go one step further for opening files and add a macro to
require.h:
#define IFOPEN(VAR, NAME) \
  ifstream VAR(NAME); \
  assure(VAR, NAME);

Which could then be used like
this:
IFOPEN(in, argv[1])

At first, this might seem appealing since
it means there's less to type. It's not terribly unsafe, but
it's a road best avoided. Note that, once again, a macro looks like a
function but behaves differently; it's actually creating an object
(in) whose scope persists beyond the macro. You may understand this, but
for new programmers and code maintainers it's just one more thing they
have to puzzle out. C++ is complicated enough without adding to the confusion,
so try to talk yourself out of using preprocessor macros whenever you
can.
9-8 - 
Summary
It's critical that you be able to
hide the underlying implementation of a class because you may want to change
that implementation sometime later. You'll make these changes for
efficiency, or because you get a better understanding of the problem, or because
some new class becomes available that you want to use in the implementation.
Anything that jeopardizes the privacy of the underlying implementation reduces
the flexibility of the language. Thus, the inline function is very important
because it virtually eliminates the need for preprocessor macros and their
attendant problems. With inlines, member functions can be as efficient as
preprocessor macros.
The inline function can be overused in
class definitions, of course. The programmer is tempted to do so because
it's easier, so it will happen. However, it's not that big of an
issue because later, when looking for size reductions, you can always change the
functions to non-inlines with no effect on their functionality. The development
guideline should be “First make it work, then optimize
it.”
9-9 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
www.BruceEckel.com.
		Write a program that uses
the F( ) macro shown at the beginning of the chapter and
demonstrates that it does not expand properly, as described in the text. Repair
the macro and show that it works
correctly.
		Write a
program that uses the FLOOR( ) macro shown at the beginning of the
chapter. Show the conditions under which it does not work
properly.
		Modify
MacroSideEffects.cpp so that BAND( ) works
properly.
		Create two
identical functions, f1( ) and f2( ). Inline
f1( ) and leave f2( ) as an non-inline function. Use the
Standard C Library function clock( ) that is found in
<ctime> to mark the starting point and ending points and compare
the two functions to see which one is faster. You may need to make repeated
calls to the functions inside your timing loop in order to get useful numbers.

		Experiment with the
size and complexity of the code inside the functions in Exercise 4 to see if you
can find a break-even point where the inline function and the non-inline
function take the same amount of time. If you have them available, try this with
different compilers and note the
differences.
		Prove
that inline functions default to internal
linkage.
		Create a
class that contains an array of char. Add an inline constructor that uses
the Standard C library function memset( ) to initialize the array to
the constructor argument (default this to ‘ '), and an inline member
function called print( ) to print out all the characters in the
array.
		Take the
NestFriend.cpp example from Chapter 5 and replace all the member
functions with inlines. Make them non-in situ inline functions. Also
change the initialize( ) functions to
constructors.
		Modify
StringStack.cpp from Chapter 8 to use inline
functions.
		Create an
enum called Hue containing red, blue,and
yellow. Now create a class called Color containing a data member
of type Hue and a constructor that sets the Hue from its argument.
Add access functions to “get” and “set” the Hue.
Make all of the functions
inlines.
		Modify
Exercise 10 to use the “accessor” and “mutator”
approach.
		Modify
Cpptime.cpp so that it measures the time from the time that the program
begins running to the time when the user presses the “Enter” or
“Return”
key.
		Create a class
with two inline member functions, such that the first function that's
defined in the class calls the second function, without the need for a forward
declaration. Write a main that creates an object of the class and calls the
first
function.
		Create a
class A with an inline default constructor that announces itself. Now
make a new class B and put an object of A asa member of
B, and give B an inline constructor. Create an array of B
objects and see what
happens.
		Create a
large quantity of the objects from the previous Exercise, and use the
Time class to time the difference between non-inline constructors and
inline constructors. (If you have a profiler, also try using that.)

		Write a program
that takes a string as the command-line argument. Write a for loop
that removes one character from the string with each pass, and use the
DEBUG( ) macro from this chapter to print the string each
time.
		Correct the
TRACE( ) macro as specified in this chapter, and prove that it works
correctly.
		Modify
the FIELD( ) macro so that it also contains an index number.
Create a class whose members are composed of calls to the FIELD( )
macro. Add a member function that allows you to look up a field using its index
number. Write a main( ) to test the
class.
		Modify the
FIELD( ) macro so that it automatically generates access functions
for each field (the data should still be private, however). Create a class whose
members are composed of calls to the FIELD( ) macro. Write a
main( ) to test the
class.
		Write a
program that takes two command-line arguments: the first is an int and
the second is a file name. Use require.h to ensure that you have the
right number of arguments, that the int is between 5 and 10, and that the
file can successfully be
opened.
		Write a
program that uses the IFOPEN( ) macro to open a file as an input
stream. Note the creation of the ifstream object and its
scope.
		(Challenging)
Determine how to get your compiler to generate assembly code. Create a file
containing a very small function and a main( ) that calls the
function. Generate assembly code when the function is inlined and not inlined,
and demonstrate that the inlined version does not have the function call
overhead.


10 - Name Control
Creating names is a fundamental
activity in programming, and when a project gets large, the number of names can
easily be overwhelming.
C++ allows you a great deal of control
over the creation and visibility of names, where storage for those names is
placed, and linkage for names.
The static
keyword was overloaded in C before people knew what the
term “overload” meant, and C++ has added yet another meaning. The
underlying concept with all uses of static seems to be “something
that holds its position” (like static electricity), whether that means a
physical location in memory or visibility within a file.
In this chapter, you'll learn how
static controls storage and visibility, and an improved way to control
access to names via C++'s namespace feature. You'll also find
out how to use functions that were written and compiled in
C.
10-1 - 
Static elements from C
In both C and C++ the keyword
static has two basic meanings, which unfortunately often step on each
other's
toes:
		Allocated once at a fixed
address; that is, the object is created in a special static data area
rather than on the stack each time a function is called. This is the concept of
static storage.

		Local to a
particular translation unit (and local to a class scope in C++, as you will see
later). Here, static controls the visibility of a name, so that
name cannot be seen outside the translation unit or class. This also describes
the concept of linkage, which determines what names the linker will
see.

This section will look at
the above meanings of static as they were inherited from
C.
10-1-1 - 
static variables inside
functions
When you create a local variable inside a
function, the compiler allocates storage for that variable each time the
function is called by moving the stack pointer down an
appropriate amount. If there is an initializer for the variable, the
initialization is performed each time that sequence point is
passed.
Sometimes, however, you want to retain a
value between function calls. You could accomplish this by making a global
variable, but then that variable would not be under the sole control of the
function. C and C++ allow you to create a static object inside a
function; the storage for this object is not on the stack but instead in the
program's static data area. This object is initialized only once, the
first time the function is called, and then retains its value between function
invocations. For example, the following function returns the next character in
the array each time the function is called:
//: C10:StaticVariablesInfunctions.cpp
#include "../require.h"
#include <iostream>
using namespace std;
 
char oneChar(const char* charArray = 0) {
  static const char* s;
  if(charArray) {
    s = charArray;
    return *s;
  }
  else
    require(s, "un-initialized s");
  if(*s == '\0')
    return 0;
  return *s++;
}
 
char* a = "abcdefghijklmnopqrstuvwxyz";
 
int main() {
  // oneChar(); // require() fails
  oneChar(a); // Initializes s to a
  char c;
  while((c = oneChar()) != 0)
    cout << c << endl;
} ///:~

The static char* s holds its value
between calls of oneChar( ) because its storage is not part of the
stack frame of the function, but is in the static storage area of the program.
When you call oneChar( ) with a char* argument, s is
assigned to that argument, and the first character of the array is returned.
Each subsequent call to oneChar( ) without an argument
produces the default value of zero for charArray, which indicates to the
function that you are still extracting characters from the previously
initialized value of s. The function will continue to produce characters
until it reaches the null terminator of the character array, at which point it
stops incrementing the pointer so it doesn't overrun the end of the
array.
But what happens if you call
oneChar( ) with no arguments and without previously initializing the
value of s? In the definition for s, you could have provided an
initializer,
static char* s = 0;

but if you do not provide an initializer
for a static variable of a built-in
type,
the compiler guarantees that variable will be initialized to zero (converted to
the proper type) at program start-up. So in oneChar( ), the first
time the function is called, s is zero. In this case, the if(!s)
conditional will catch it.
The initialization above for s is
very simple, but initialization for static objects (like all other objects) can
be arbitrary expressions involving constants and previously declared variables
and functions.
You should be aware that the function
above is very vulnerable to multithreading problems; whenever you design
functions containing static variables you should keep multithreading issues in
mind.

static class objects inside
functions
The rules are the same for static objects
of user-defined types, including the fact that some initialization is required
for the object. However, assignment to zero has meaning only for built-in types;
user-defined types must be initialized with constructor calls. Thus, if you
don't specify constructor arguments when you define the static object, the
class must have a default
constructor. For
example,
//: C10:StaticObjectsInFunctions.cpp
#include <iostream>
using namespace std;
 
class X {
  int i;
public:
  X(int ii = 0) : i(ii) {} // Default
  ~X() { cout << "X::~X()" << endl; }
};
 
void f() {
  static X x1(47);
  static X x2; // Default constructor required
}
 
int main() {
  f();
} ///:~

The static objects of type X
inside f( ) can be initialized either with the constructor argument
list or with the default constructor. This construction occurs the first time
control passes through the definition, and only the first time.

Static object destructors
Destructors for static objects (that is,
all objects with static storage, not just local static objects as in the example
above) are called when main( ) exits or when the Standard C library
function
exit( )
is explicitly called. In most implementations, main( ) just
calls exit( ) when it terminates. This means that it can be
dangerous to call exit( ) inside a destructor because you can end up
with infinite recursion. Static object destructors are not called if you
exit the program using the Standard C library function
abort( ).
You can specify actions to take place
when leaving main( ) (or calling exit( )) by using the
Standard C library function
atexit( ).
In this case, the functions registered by atexit( ) may be called
before the destructors for any objects constructed before leaving
main( ) (or calling exit( )).
Like ordinary destruction, destruction of
static objects
occurs
in the reverse order of initialization. However, only objects that have been
constructed are destroyed. Fortunately, the C++ development tools keep track of
initialization order and the objects that have been constructed. Global objects
are always
constructed
before main( ) is entered and destroyed as main( )
exits, but if a function containing a local static object
is never
called, the constructor for that object is never executed, so the destructor is
also not executed. For example,
//: C10:StaticDestructors.cpp
// Static object destructors
#include <fstream>
using namespace std;
ofstream out("statdest.out"); // Trace file
 
class Obj {
  char c; // Identifier
public:
  Obj(char cc) : c(cc) {
    out << "Obj::Obj() for " << c << endl;
  }
  ~Obj() {
    out << "Obj::~Obj() for " << c << endl;
  }
};
 
Obj a('a'); // Global (static storage)
// Constructor & destructor always called
 
void f() {
  static Obj b('b');
}
 
void g() {
  static Obj c('c');
}
 
int main() {
  out << "inside main()" << endl;
  f(); // Calls static constructor for b
  // g() not called
  out << "leaving main()" << endl;
} ///:~

In Obj, the char c acts as
an identifier so the constructor and destructor can print out information about
the object they're working on. The Obj a is a global object, so the
constructor is always called for it before main( ) is entered, but
the constructors for the static Obj b inside f( ) and the
static Obj c inside g( ) are called only if those functions
are called.
To demonstrate which constructors and
destructors are called, only f( ) is called. The output of the
program is
Obj::Obj() for a
inside main()
Obj::Obj() for b
leaving main()
Obj::~Obj() for b
Obj::~Obj() for a

The constructor for a is called
before main( ) is entered, and the constructor for b is
called only because f( ) is called. When main( ) exits,
the destructors for the objects that have been constructed are called in reverse
order of their construction. This means that if g( ) is
called, the order in which the destructors for b and c are called
depends on whether f( ) or g( ) is called
first.
Notice that the trace file
ofstream object out is also a static object - since it is
defined outside of all functions, it lives in the static storage
area. It is important that its definition (as opposed to
an extern declaration) appear at the beginning of the file, before there
is any possible use of out. Otherwise, you'll be using an object
before it is properly initialized.
In C++, the constructor for a global
static object is called before main( ) is entered, so you now have a
simple and portable way to execute code before entering
main( ) and to
execute code with the destructor after exiting
main( ).
In C, this was always a trial that required you to root around in the compiler
vendor's assembly-language startup
code.
10-1-2 - 
Controlling linkage
Ordinarily, any name at file scope
(that is, not nested inside a
class or function) is visible throughout all translation units in a program.
This is often called external linkage
because at link time the name is
visible to the linker everywhere, external to that translation unit. Global
variables and ordinary functions have external linkage.
There are times when you'd like to
limit the visibility of a name. You might like to have a variable at file scope
so all the functions in that file can use it, but you don't want functions
outside that file to see or access that variable, or to inadvertently cause name
clashes with identifiers outside the file.
An object or function name at file scope
that is explicitly declared static is local to its translation unit (in
the terms of this book, the cpp file where the declaration occurs). That
name has internal
linkage. This means that you
can use the same name in other translation units without a name
clash.
One advantage to internal linkage is that
the name can be placed in a header file without worrying
that there will be a clash at link time. Names that are commonly placed in
header files, such as const definitions and inline functions,
default to internal linkage. (However, const defaults to internal linkage
only in C++; in C it defaults to external linkage.) Note that linkage refers
only to elements that have addresses at link/load time; thus, class declarations
and local variables have no
linkage.

Confusion
Here's an example of how the two
meanings of static can
cross over each other. All global objects implicitly have static storage
class, so if you say (at file scope),
int a = 0;

then storage for a will be in the
program's static data area, and the initialization for a will occur
once, before main( ) is entered. In addition, the visibility of
a is global across all translation units. In terms of visibility, the
opposite of static (visible only in this translation unit) is
extern,
which explicitly states that the visibility of the name is across all
translation units. So the definition above is equivalent to
saying
extern int a = 0;

But if you say instead,
static int a = 0;

all you've done is change the
visibility, so a has internal linkage. The storage class is unchanged
- the object resides in the static data area whether the visibility is
static or extern.
Once you get into local variables,
static stops altering the visibility and instead alters the storage
class. 
If you declare what appears to be a local
variable as extern, it means that the storage exists elsewhere (so the
variable is actually global to the function). For example:
//: C10:LocalExtern.cpp
//{L} LocalExtern2
#include <iostream>
 
int main() {
  extern int i;
  std::cout << i;
} ///:~
 
//: C10:LocalExtern2.cpp {O}
int i = 5;
///:~

With function names (for non-member
functions), static and extern can only alter visibility, so if you
say
extern void f();

it's the same as the unadorned
declaration
void f();

and if you say,
static void f();

it means f( ) is visible only
within this translation unit - this is sometimes called file
static.
10-1-3 - 
Other storage class specifiers
You will see static and
extern used commonly. There are two other storage class specifiers that
occur less often. The auto
specifier is almost never used
because it tells the compiler that this is a local variable. auto is
short for “automatic” and it refers to the way the compiler
automatically allocates storage for the variable. The compiler can always
determine this fact from the context in which the variable is defined, so
auto is redundant.
A register
variable is a local
(auto) variable, along with a hint to the compiler that this particular
variable will be heavily used so the compiler ought to keep it in a register if
it can. Thus, it is an optimization aid. Various compilers respond differently
to this hint; they have the option to ignore it. If you take the address of the
variable, the register specifier will almost certainly be ignored. You
should avoid using register because the compiler can usually do a better
job of optimization than
you.
10-2 - 
Namespaces
Although names can be nested inside
classes, the names of global functions, global variables, and classes are still
in a single global name space. The static keyword gives you some control
over this by allowing you to give variables and functions internal linkage (that
is, to make them file static).
But in a large project, lack of control over the global name space can cause
problems. To solve these problems for classes, vendors often create long
complicated names that are unlikely to clash, but then you're stuck typing
those names. (A typedef is often used to simplify
this.) It's not an elegant, language-supported solution.
You can subdivide the global name space
into more manageable pieces using the namespace
feature of C++. The
namespace keyword, similar to class,
struct, enum, and union, puts the names of its members in a
distinct space. While the other keywords have additional purposes, the creation
of a new name space is the only purpose for
namespace.
10-2-1 - 
Creating a namespace
The creation of a namespace is notably
similar to the creation of a class:
//: C10:MyLib.cpp
namespace MyLib {
  // Declarations
}
int main() {} ///:~

This produces a new namespace containing
the enclosed declarations. There are significant differences from class,
struct, union and enum,
however:
		A namespace definition can
appear only at global scope, or nested within another
namespace.
		No
terminating semicolon is necessary after the closing brace of a namespace
definition.
		A
namespace definition can be “continued” over multiple header files
using a syntax that, for a class, would appear to be a redefinition:

//: C10:Header1.h
#ifndef HEADER1_H
#define HEADER1_H
namespace MyLib {
  extern int x;
  void f();
  // ...
}

#endif // HEADER1_H ///:~
//: C10:Header2.h
#ifndef HEADER2_H
#define HEADER2_H
#include "Header1.h"
// Add more names to MyLib
namespace MyLib { // NOT a redefinition!
  extern int y;
  void g();
  // ...
}

#endif // HEADER2_H ///:~
//: C10:Continuation.cpp
#include "Header2.h"
int main() {} ///:~

		A namespace name can be
aliased to another name, so you don't have to type an unwieldy name
created by a library vendor:

//: C10:BobsSuperDuperLibrary.cpp
namespace BobsSuperDuperLibrary {
  class Widget { /* ... */ };
  class Poppit { /* ... */ };
  // ...
}
// Too much to type! I'll alias it:
namespace Bob = BobsSuperDuperLibrary;
int main() {} ///:~

		You cannot create an
instance of a namespace as you can with a
class.


Unnamed namespaces
Each translation unit contains an unnamed
namespace that you can add to by
saying “namespace” without an identifier:
//: C10:UnnamedNamespaces.cpp
namespace {
  class Arm  { /* ... */ };
  class Leg  { /* ... */ };
  class Head { /* ... */ };
  class Robot {
    Arm arm[4];
    Leg leg[16];
    Head head[3];
    // ...
  } xanthan;
  int i, j, k;
}
int main() {} ///:~

The names in this space are automatically
available in that translation unit without qualification. It is guaranteed that
an unnamed space is unique for each translation unit. If you put local names in
an unnamed namespace, you don't need to give them internal linkage by
making them static.
C++ deprecates the use of file statics in
favor of the unnamed namespace.

Friends
You can inject
a friend declaration into
a namespace by declaring it within an enclosed
class:
//: C10:FriendInjection.cpp
namespace Me {
  class Us {
    //...
    friend void you();
  };
} 
int main() {} ///:~

Now the function you( ) is a
member of the namespace Me.
If you introduce a friend within a class
in the global namespace, the friend is injected
globally.
10-2-2 - 
Using a namespace
You can refer to a name within a
namespace in three ways: by specifying the name using
the scope resolution operator, with a using directive to introduce all
names in the namespace, or with a using
declaration to introduce names
one at a time.

Scope resolution
Any name in a namespace can be explicitly
specified using the
scope
resolution operator in the same way that you can refer to the names within a
class:
//: C10:ScopeResolution.cpp
namespace X {
  class Y {
    static int i;
  public:
    void f();
  };
  class Z;
  void func();
}
int X::Y::i = 9;

class X::Z {
  int u, v, w;
public:
  Z(int i);
  int g();
};

X::Z::Z(int i) { u = v = w = i; }
int X::Z::g() { return u = v = w = 0; }

void X::func() {
  X::Z a(1);
  a.g();
}
int main(){} ///:~

Notice that the definition X::Y::i
could just as easily be referring to a data member of a class Y nested in
a class X instead of a namespace X.
So far, namespaces look very much like
classes.

The using directive
Because it can rapidly get tedious to
type the full qualification for an identifier in a namespace, the using
keyword allows you to import an entire namespace at once. When used in
conjunction with the namespace keyword this is called a
using
directive. The using
directive makes names appear as if they belong to the nearest enclosing
namespace scope, so you can conveniently use the unqualified names. Consider a
simple namespace:
//: C10:NamespaceInt.h
#ifndef NAMESPACEINT_H
#define NAMESPACEINT_H
namespace Int {
  enum sign { positive, negative };
  class Integer {
    int i;
    sign s;
  public:
    Integer(int ii = 0) 
      : i(ii),
        s(i >= 0 ? positive : negative)
    {}
    sign getSign() const { return s; }
    void setSign(sign sgn) { s = sgn; }
    // ...
  };
} 
#endif // NAMESPACEINT_H ///:~

One use of the using directive is
to bring all of the names in Int into another namespace, leaving those
names nested within the namespace:
//: C10:NamespaceMath.h
#ifndef NAMESPACEMATH_H
#define NAMESPACEMATH_H
#include "NamespaceInt.h"
namespace Math {
  using namespace Int;
  Integer a, b;
  Integer divide(Integer, Integer);
  // ...
} 
#endif // NAMESPACEMATH_H ///:~

You can also declare all of the names in
Int inside a function, but leave those names nested within the
function:
//: C10:Arithmetic.cpp
#include "NamespaceInt.h"
void arithmetic() {
  using namespace Int;
  Integer x;
  x.setSign(positive);
}
int main(){} ///:~

Without the using directive, all
the names in the namespace would need to be fully qualified.
One aspect of the using directive
may seem slightly counterintuitive at first. The visibility of the names
introduced with a using directive is the scope in which the directive is
made. But you can override the names from the using directive as if
they've been declared globally to that scope! 
//: C10:NamespaceOverriding1.cpp
#include "NamespaceMath.h"
int main() {
  using namespace Math;
  Integer a; // Hides Math::a;
  a.setSign(negative);
  // Now scope resolution is necessary
  // to select Math::a :
  Math::a.setSign(positive);
} ///:~

Suppose you have a second namespace that
contains some of the names in namespace Math:
//: C10:NamespaceOverriding2.h
#ifndef NAMESPACEOVERRIDING2_H
#define NAMESPACEOVERRIDING2_H
#include "NamespaceInt.h"
namespace Calculation {
  using namespace Int;
  Integer divide(Integer, Integer);
  // ...
} 
#endif // NAMESPACEOVERRIDING2_H ///:~

Since this namespace is also introduced
with a using directive, you have the possibility of a collision. However,
the ambiguity appears at the
point of use of the name, not at the using
directive:
//: C10:OverridingAmbiguity.cpp
#include "NamespaceMath.h"
#include "NamespaceOverriding2.h"
void s() {
  using namespace Math;
  using namespace Calculation;
  // Everything's ok until:
  //! divide(1, 2); // Ambiguity
}
int main() {} ///:~

Thus, it's possible to write
using directives to introduce a number of namespaces with conflicting
names without ever producing an ambiguity.

The using declaration
You can inject names one at a time into
the current scope with a using
declaration.
Unlike the using directive, which treats names as if they were declared
globally to the scope, a using declaration is a declaration within the
current scope. This means it can override names from a using
directive:
//: C10:UsingDeclaration.h
#ifndef USINGDECLARATION_H
#define USINGDECLARATION_H
namespace U {
  inline void f() {}
  inline void g() {}
}
namespace V {
  inline void f() {}
  inline void g() {}
} 
#endif // USINGDECLARATION_H ///:~

//: C10:UsingDeclaration1.cpp
#include "UsingDeclaration.h"
void h() {
  using namespace U; // Using directive
  using V::f; // Using declaration
  f(); // Calls V::f();
  U::f(); // Must fully qualify to call
}
int main() {} ///:~

The using declaration just gives
the fully specified name of the identifier, but no type information. This means
that if the namespace contains a set of
overloaded functions with the
same name, the using declaration declares all the functions in the
overloaded set.
You can put a using declaration
anywhere a normal declaration can occur. A using declaration works like a
normal declaration in all ways but one: because you don't give an argument
list, it's possible for a using declaration to cause the overload
of a function with the same argument types (which
isn't allowed with normal overloading). This ambiguity, however,
doesn't show up until the point of use, rather than the point of
declaration.
A using declaration can also
appear within a namespace, and it has the same effect as anywhere else -
that name is declared within the space:
//: C10:UsingDeclaration2.cpp
#include "UsingDeclaration.h"
namespace Q {
  using U::f;
  using V::g;
  // ...
}
void m() {
  using namespace Q;
  f(); // Calls U::f();
  g(); // Calls V::g();
}
int main() {} ///:~

A using declaration is an alias,
and it allows you to declare the same function in separate namespaces. If you
end up re-declaring the same function by importing different namespaces,
it's OK - there won't be any ambiguities or
duplications.
10-2-3 - 
The use of namespaces
Some of the rules above may seem a bit
daunting at first, especially if you get the impression that you'll be
using them all the time. In general, however, you can get away with very simple
usage of namespaces as long as you understand how they work. The key thing to
remember is that when you introduce a global using directive (via a
“using namespace” outside of any scope) you have thrown open
the namespace for that file. This is usually fine for an implementation file (a
“cpp” file) because the using directive is only in
effect until the end of the compilation of that file. That is, it doesn't
affect any other files, so you can adjust the control of the namespaces one
implementation file at a time. For example, if you discover a name clash because
of too many using directives in a particular implementation file, it is a
simple matter to change that file so that it uses explicit qualifications or
using declarations to eliminate the clash, without modifying other
implementation files.
Header
files are a different issue. You virtually never want to introduce a global
using directive into a header file, because that would mean that any
other file that included your header would also have the namespace thrown open
(and header files can include other header files). 
So, in header files you should either use
explicit qualification or scoped using directives and using
declarations. This is the practice that you will find in this book, and by
following it you will not “pollute” the global namespace and throw
yourself back into the pre-namespace world of C++.

10-3 - 
Static members in
C++
There are times when you need a single
storage space to be used by all objects of a class. In C, you would use a global
variable, but this is not very safe. Global data can be modified by anyone, and
its name can clash with other identical names in a large project. It would be
ideal if the data could be stored as if it were global, but be hidden inside a
class, and clearly associated with that class.
This is accomplished with static
data members inside a class. There is a single piece of storage for a
static data member, regardless of how many objects of that class you
create. All objects share the same static storage space for that data
member, so it is a way for them to “communicate” with each other.
But the static data belongs to the class; its name is scoped inside the
class and it can be public, private, or
protected.
10-3-1 - 
Defining storage for static data
members
Because static data has a single
piece of storage regardless of how many objects are created, that storage must
be defined in a single place. The compiler will not allocate storage for you.
The linker will report an error if a static data member is declared but
not defined.
The definition must occur outside the
class (no inlining is allowed), and only one definition is allowed. Thus, it is
common to put it in the implementation file for the class. The syntax sometimes
gives people trouble, but it is actually quite logical. For example, if you
create a static data member inside a class like this:
class A {
  static int i;
public:
  //...
};

Then you must define storage for that
static data member in the definition file like this:
int A::i = 1;

If you were to define an ordinary global
variable, you would say
int i = 1;

but here, the scope resolution operator
and the class name are used to specify A::i.
Some people have trouble with the idea
that A::i is private, and yet here's something that seems to
be manipulating it right out in the open. Doesn't this break the
protection mechanism? It's a completely safe practice for two reasons.
First, the only place this initialization is legal is in the definition. Indeed,
if the static data were an object with a constructor, you would call the
constructor instead of using the = operator. Second, once the definition
has been made, the end-user cannot make a second definition - the linker
will report an error. And the class creator is forced to create the definition
or the code won't link during testing. This ensures that the definition
happens only once and that it's in the hands of the class
creator.
The entire initialization expression for
a static member is in the scope
of the class. For example,
//: C10:Statinit.cpp
// Scope of static initializer
#include <iostream>
using namespace std;
 
int x = 100;
 
class WithStatic {
  static int x;
  static int y;
public:
  void print() const {
    cout << "WithStatic::x = " << x << endl;
    cout << "WithStatic::y = " << y << endl;
  }
};
 
int WithStatic::x = 1;
int WithStatic::y = x + 1;
// WithStatic::x NOT ::x
 
int main() {
  WithStatic ws;
  ws.print();
} ///:~

Here, the qualification
WithStatic:: extends the scope of WithStatic to the entire
definition.

static array initialization
Chapter 8 introduced the static
const variable that allows you to define a constant value inside a class
body.
It's
also possible to create arrays of static objects, both const and
non-const. The syntax is reasonably consistent:
//: C10:StaticArray.cpp
// Initializing static arrays in classes
class Values {
  // static consts are initialized in-place:
  static const int scSize = 100;
  static const long scLong = 100;
  // Automatic counting works with static arrays.
  // Arrays, Non-integral and non-const statics 
  // must be initialized externally:
  static const int scInts[];
  static const long scLongs[];
  static const float scTable[];
  static const char scLetters[];
  static int size;
  static const float scFloat;
  static float table[];
  static char letters[];
};
 
int Values::size = 100;
const float Values::scFloat = 1.1;
 
const int Values::scInts[] = {
  99, 47, 33, 11, 7
};
 
const long Values::scLongs[] = {
  99, 47, 33, 11, 7
};
 
const float Values::scTable[] = {
  1.1, 2.2, 3.3, 4.4
};
 
const char Values::scLetters[] = {
  'a', 'b', 'c', 'd', 'e',
  'f', 'g', 'h', 'i', 'j'
};
 
float Values::table[4] = {
  1.1, 2.2, 3.3, 4.4
};
 
char Values::letters[10] = {
  'a', 'b', 'c', 'd', 'e',
  'f', 'g', 'h', 'i', 'j'
};
 
int main() { Values v; } ///:~

With static consts of integral
types you can provide the definitions inside the class, but for everything else
(including arrays of integral types, even if they are static const)you must provide a single external definition for the member. These
definitions have internal linkage, so they can be placed in header files. The
syntax for initializing static arrays is the same as for any aggregate,
including automatic counting.
You can also create static const
objects of class types and arrays of such objects. However, you cannot
initialize them using the “inline syntax” allowed for staticconsts of integral built-in types:
//: C10:StaticObjectArrays.cpp
// Static arrays of class objects
class X {
  int i;
public:
  X(int ii) : i(ii) {}
};
 
class Stat {
  // This doesn't work, although 
  // you might want it to:
//!  static const X x(100);
  // Both const and non-const static class 
  // objects must be initialized externally:
  static X x2;
  static X xTable2[];
  static const X x3;
  static const X xTable3[];
};
 
X Stat::x2(100);
 
X Stat::xTable2[] = {
  X(1), X(2), X(3), X(4)
};
 
const X Stat::x3(100);
 
const X Stat::xTable3[] = {
  X(1), X(2), X(3), X(4)
};
 
int main() { Stat v; } ///:~

The initialization of both const
and non-const static arrays of class objects must be performed the
same way, following the typical static definition
syntax.
10-3-2 - 
Nested and local classes
You can easily put static data members in
classes that are nested inside
other classes. The definition of such members is an intuitive and obvious
extension - you simply use another level of scope resolution. However, you
cannot have static data members inside local classes
(a local class is a class
defined inside a function). Thus,
//: C10:Local.cpp
// Static members & local classes
#include <iostream>
using namespace std;
 
// Nested class CAN have static data members:
class Outer {
  class Inner {
    static int i; // OK
  };
};
 
int Outer::Inner::i = 47;
 
// Local class cannot have static data members:
void f() {
  class Local {
  public:
//! static int i;  // Error
    // (How would you define i?)
  } x;
} 
 
int main() { Outer x; f(); } ///:~

You can see the immediate problem with a
static member in a local class: How do you describe the data member at
file scope in order to define it? In practice, local classes are used very
rarely.
10-3-3 - 
static member functions
You can also create static member
functions
that,
like static data members, work for the class as a whole rather than for a
particular object of a class. Instead of making a global function that lives in
and “pollutes” the global or local namespace, you bring the function
inside the class. When you create a static member function, you are
expressing an association with a particular class.
You can call a static member
function in the ordinary way, with the dot or the arrow, in association with an
object. However, it's more typical to call a static member function
by itself, without any specific object, using the scope-resolution operator,
like
this:
//: C10:SimpleStaticMemberFunction.cpp 
class X {
public:
  static void f(){};
};
 
int main() {
  X::f();
} ///:~

When you see static member functions in a
class, remember that the designer intended that function to be conceptually
associated with the class as a whole.
A static member function cannot
access ordinary data members, only static data members. It can call only
other static member functions. Normally, the address of the current
object (this) is quietly passed in when any
member function is called, but a static member has no
this, which is the reason it cannot access
ordinary members. Thus, you get the tiny increase in speed afforded by a global
function because a static member function doesn't have the extra
overhead of passing this. At the same time you get the benefits of having
the function inside the class.
For data members, static indicates
that only one piece of storage for member data exists for all objects of a
class. This parallels the use of static to define objects inside a
function to mean that only one copy of a local variable is used for all calls of
that function.
Here's an example showing
static data members and static member
functions used together:
//: C10:StaticMemberFunctions.cpp
class X {
  int i;
  static int j;
public:
  X(int ii = 0) : i(ii) {
     // Non-static member function can access
     // static member function or data:
    j = i;
  }
  int val() const { return i; }
  static int incr() {
    //! i++; // Error: static member function
    // cannot access non-static member data
    return ++j;
  }
  static int f() {
    //! val(); // Error: static member function
    // cannot access non-static member function
    return incr(); // OK -- calls static
  }
};
 
int X::j = 0;
 
int main() {
  X x;
  X* xp = &x;
  x.f();
  xp->f();
  X::f(); // Only works with static members
} ///:~

Because they have no this pointer,
static member functions can neither access non-static data members
nor call non-static member functions.
Notice in main( ) that a
static member can be selected using the usual dot or arrow syntax,
associating that function with an object, but also with no object (because a
static member is associated with a class, not a particular object), using
the class name and scope resolution operator.
Here's an interesting feature:
Because of the way initialization happens for static member objects, you
can put a static data member of the same class inside that class.
Here's an example that allows only a single object of type Egg to
exist by making the constructor private. You can access that object, but you
can't create any new Egg objects:
//: C10:Singleton.cpp
// Static member of same type, ensures that
// only one object of this type exists.
// Also referred to as the "singleton" pattern.
#include <iostream>
using namespace std;
 
class Egg {
  static Egg e;
  int i;
  Egg(int ii) : i(ii) {}
  Egg(const Egg&); // Prevent copy-construction
public:
  static Egg* instance() { return &e; }
  int val() const { return i; }
};
 
Egg Egg::e(47);
 
int main() {
//!  Egg x(1); // Error -- can't create an Egg
  // You can access the single instance:
  cout << Egg::instance()->val() << endl;
} ///:~

The initialization for E happens
after the class declaration is complete, so the compiler has all the information
it needs to allocate storage and make the constructor call.
To completely prevent the creation of any
other objects, something else has been added: a second private constructor
called the
copy-constructor. At this
point in the book, you cannot know why this is necessary since the copy
constructor will not be introduced until the next chapter. However, as a sneak
preview, if you were to remove the copy-constructor defined in the example
above, you'd be able to create an Egg object like
this:
Egg e = *Egg::instance();
Egg e2(*Egg::instance());

Both of these use the copy-constructor,
so to seal off that possibility the copy-constructor is declared as private (no
definition is necessary because it never gets called). A large portion of the
next chapter is a discussion of the copy-constructor so it should become clear
to you
then.
10-4 - 
Static initialization
dependency
Within a specific translation unit, the
order of initialization of static objects is guaranteed to be the order in which
the object definitions appear in that translation unit.
The order of destruction is guaranteed to be the reverse of the order of
initialization.
However, there is no guarantee concerning
the order of initialization of static objects across translation units,
and the language provides no way to specify this order. This can cause
significant problems. As an example of an instant disaster (which will halt
primitive operating systems and kill the process on sophisticated ones), if one
file contains
//: C10:Out.cpp {O}
// First file
#include <fstream>
std::ofstream out("out.txt"); ///:~

and another file uses the out
object in one of its initializers
//: C10:Oof.cpp
// Second file
//{L} Out
#include <fstream>
extern std::ofstream out;
class Oof {
public:
  Oof() { std::out << "ouch"; }
} oof;

int main() {} ///:~

the program may work, and it may not. If
the programming environment builds the program so that the first file is
initialized before the second file, then there will be no problem. However, if
the second file is initialized before the first, the constructor for Oof
relies upon the existence of out, which hasn't been constructed yet
and this causes chaos. 
This problem only occurs with static
object initializers that depend on each other. The statics in a
translation unit are initialized before the first invocation of a function in
that unit - but it could be after main( ). You can't be
sure about the order of initialization of static objects if they're in
different files.
A subtler example can be found in the
ARM.(47)
In one file you have at the global scope:
extern int y;
int x = y + 1;

and in a second file you have at the
global scope:
extern int x;
int y = x + 1;

For all static objects, the
linking-loading mechanism guarantees a static initialization to
zero before the dynamic
initialization specified by the programmer takes place. In the previous example,
zeroing of the storage occupied by the fstream out object has no special
meaning, so it is truly undefined until the constructor is called. However, with
built-in types, initialization to zero does have meaning, and if the
files are initialized in the order they are shown above, y begins as
statically initialized to zero, so x becomes one, and y is
dynamically initialized to two. However, if the files are initialized in the
opposite order, x is statically initialized to zero, y is
dynamically initialized to one, and x then becomes two.
Programmers must be aware of this because
they can create a program with static initialization dependencies and get it
working on one platform, but move it to another compiling environment where it
suddenly, mysteriously, doesn't
work.
10-4-1 - 
What to do
There are three approaches to dealing
with this problem:
		Don't do it.
Avoiding static initialization dependencies is the best
solution.
		If you
must do it, put the critical static object definitions in a single file, so you
can portably control their initialization by putting them in the correct
order.
		If
you're convinced it's unavoidable to scatter static objects across
translation units - as in the case of a library, where you can't
control the programmer who uses it - there are two programmatic techniques
to solve the problem.


Technique one
This technique was pioneered by Jerry
Schwarz while creating the iostream library (because the
definitions for cin, cout, and cerr are static and
live in a separate file). It's actually inferior to the second technique
but it's been around a long time and so you may come across code that uses
it; thus it's important that you understand how it works.
This technique requires an additional
class in your library header file. This class is responsible for the dynamic
initialization of your library's static objects. Here is a simple
example:
//: C10:Initializer.h
// Static initialization technique
#ifndef INITIALIZER_H
#define INITIALIZER_H
#include <iostream>
extern int x; // Declarations, not definitions
extern int y;
 
class Initializer {
  static int initCount;
public:
  Initializer() {
    std::cout << "Initializer()" << std::endl;
    // Initialize first time only
    if(initCount++ == 0) {
      std::cout << "performing initialization"
                << std::endl;
      x = 100;
      y = 200;
    }
  }
  ~Initializer() {
    std::cout << "~Initializer()" << std::endl;
    // Clean up last time only
    if(--initCount == 0) {
      std::cout << "performing cleanup" 
                << std::endl;
      // Any necessary cleanup here
    }
  }
};
 
// The following creates one object in each
// file where Initializer.h is included, but that
// object is only visible within that file:
static Initializer init;
#endif // INITIALIZER_H ///:~

The declarations for x and
y announce only that these objects exist, but they don't allocate
storage for the objects. However, the definition for the Initializer init
allocates storage for that object in every file where the header is included.
But because the name is static (controlling visibility this time, not the
way storage is allocated; storage is at file scope by default), it is visible
only within that translation unit, so the linker will not complain about
multiple definition errors.
Here is the file containing the
definitions for x, y, and initCount:
//: C10:InitializerDefs.cpp {O}
// Definitions for Initializer.h
#include "Initializer.h"
// Static initialization will force
// all these values to zero:
int x;
int y;
int Initializer::initCount;
///:~

(Of course, a file static instance of
init is also placed in this file when the header is included.) Suppose
that two other files are created by the library user:
//: C10:Initializer.cpp {O}
// Static initialization
#include "Initializer.h"
///:~

and
//: C10:Initializer2.cpp
//{L} InitializerDefs Initializer
// Static initialization
#include "Initializer.h"
using namespace std;
 
int main() {
  cout << "inside main()" << endl;
  cout << "leaving main()" << endl;
} ///:~

Now it doesn't matter which
translation unit is initialized first. The first time a translation unit
containing Initializer.h is initialized, initCount will be zero so
the initialization will be performed. (This depends heavily on the fact that the
static storage area is set to zero before any dynamic initialization takes
place.) For all the rest of the translation units, initCount will be
nonzero and the initialization will be skipped. Cleanup happens in the reverse
order, and ~Initializer( ) ensures that it will happen only
once.
This example used built-in types as the
global static objects. The technique also works with classes, but those objects
must then be dynamically initialized by the Initializer class. One way to
do this is to create the classes without constructors and destructors, but
instead with initialization and cleanup member functions using different names.
A more common approach, however, is to have pointers to objects and to create
them using new inside Initializer( ).

Technique two
Long after technique one was in use,
someone (I don't know who) came up with the technique explained in this
section, which is much simpler and cleaner than technique one. The fact that it
took so long to discover is a tribute to the complexity of C++.
This technique relies on the fact that
static
objects inside functions are initialized the first time (only) that the function
is called. Keep in mind that the problem we're really trying to solve here
is not when the static objects are initialized (that can be controlled
separately) but rather making sure that the initialization happens in the proper
order.
This technique is very neat and clever.
For any initialization dependency, you place a static object inside a function
that returns a reference to that object. This way, the only way you can access
the static object is by calling the function, and if that object needs to access
other static objects on which it is dependent it must call their
functions. And the first time a function is called, it forces the initialization
to take place. The order of static initialization is guaranteed to be correct
because of the design of the code, not because of an arbitrary order established
by the linker.
To set up an example, here are two
classes that depend on each other. The first one contains a bool that is
initialized only by the constructor, so you can tell if the constructor has been
called for a static instance of the class (the static storage area is
initialized to zero at program startup, which produces a false value for
the bool if the constructor has not been called):
//: C10:Dependency1.h
#ifndef DEPENDENCY1_H
#define DEPENDENCY1_H
#include <iostream>
 
class Dependency1 {
  bool init;
public:
  Dependency1() : init(true) {
    std::cout << "Dependency1 construction" 
              << std::endl;
  }
  void print() const {
    std::cout << "Dependency1 init: " 
              << init << std::endl;
  }
};
#endif // DEPENDENCY1_H ///:~

The constructor also announces when it is
being called, and you can print( ) the state of the object to find
out if it has been initialized.
The second class is initialized from an
object of the first class, which is what will cause the
dependency:
//: C10:Dependency2.h
#ifndef DEPENDENCY2_H
#define DEPENDENCY2_H
#include "Dependency1.h"
 
class Dependency2 {
  Dependency1 d1;
public:
  Dependency2(const Dependency1& dep1): d1(dep1){
    std::cout << "Dependency2 construction ";
    print();
  }
  void print() const { d1.print(); }
};
#endif // DEPENDENCY2_H ///:~

The constructor announces itself and
prints the state of the d1 object so you can see if it has been
initialized by the time the constructor is called.
To demonstrate what can go wrong, the
following file first puts the static object definitions in the wrong order, as
they would occur if the linker happened to initialize the Dependency2
object before the Dependency1 object. Then the order is reversed to show
how it works correctly if the order happens to be “right.” Lastly,
technique two is demonstrated.
To provide more readable output, the
function separator( ) is created. The trick is that you can't
call a function globally unless that function is being used to perform the
initialization of a variable, so separator( ) returns a dummy value
that is used to initialize a couple of global variables.
//: C10:Technique2.cpp
#include "Dependency2.h"
using namespace std;
 
// Returns a value so it can be called as
// a global initializer:
int separator() {
  cout << "---------------------" << endl;
  return 1;
}
 
// Simulate the dependency problem:
extern Dependency1 dep1;
Dependency2 dep2(dep1);
Dependency1 dep1;
int x1 = separator();
 
// But if it happens in this order it works OK:
Dependency1 dep1b;
Dependency2 dep2b(dep1b);
int x2 = separator();
 
// Wrapping static objects in functions succeeds
Dependency1& d1() {
  static Dependency1 dep1;
  return dep1;
}
 
Dependency2& d2() {
  static Dependency2 dep2(d1());
  return dep2;
}
 
int main() {
  Dependency2& dep2 = d2();
} ///:~

The functions d1( ) and
d2( ) wrap static instances of Dependency1 and
Dependency2 objects. Now, the only way you can get to the static objects
is by calling the functions and that forces static initialization on the first
function call. This means that initialization is guaranteed to be correct, which
you'll see when you run the program and look at the
output.
Here's how you would actually
organize the code to use the technique. Ordinarily, the static objects would be
defined in separate files (because you're forced to for some reason;
remember that defining the static objects in separate files is what causes the
problem), so instead you define the wrapping functions in separate files. But
they'll need to be declared in header files:
//: C10:Dependency1StatFun.h
#ifndef DEPENDENCY1STATFUN_H
#define DEPENDENCY1STATFUN_H
#include "Dependency1.h"
extern Dependency1& d1();
#endif // DEPENDENCY1STATFUN_H ///:~

Actually, the “extern” is
redundant for the function declaration. Here's the second header
file:
//: C10:Dependency2StatFun.h
#ifndef DEPENDENCY2STATFUN_H
#define DEPENDENCY2STATFUN_H
#include "Dependency2.h"
extern Dependency2& d2();
#endif // DEPENDENCY2STATFUN_H ///:~

Now, in the implementation files where
you would previously have placed the static object definitions, you instead
place the wrapping function definitions:
//: C10:Dependency1StatFun.cpp {O}
#include "Dependency1StatFun.h"
Dependency1& d1() {
  static Dependency1 dep1;
  return dep1;
} ///:~

Presumably, other code might also be
placed in these files. Here's the other file:
//: C10:Dependency2StatFun.cpp {O}
#include "Dependency1StatFun.h"
#include "Dependency2StatFun.h"
Dependency2& d2() {
  static Dependency2 dep2(d1());
  return dep2;
} ///:~

So now there are two files that could be
linked in any order and if they contained ordinary static objects could produce
any order of initialization. But since they contain the wrapping functions,
there's no threat of incorrect initialization:
//: C10:Technique2b.cpp
//{L} Dependency1StatFun Dependency2StatFun
#include "Dependency2StatFun.h"
int main() { d2(); } ///:~

When you run this program you'll
see that the initialization of the Dependency1 static object always
happens before the initialization of the Dependency2 static object. You
can also see that this is a much simpler approach than technique
one.
You might be tempted to write
d1( ) and d2( ) as inline functions inside their
respective header files, but this is something you must definitely not do. An
inline function can be duplicated in every file in which it appears - and
this duplication includes the static object definition. Because inline
functions automatically default to internal linkage, this would result in having
multiple static objects across the various translation units, which would
certainly cause problems. So you must ensure that there is only one definition
of each wrapping function, and this means not making the wrapping functions
inline.
10-5 - 
Alternate linkage
specifications
What happens if you're writing a
program in C++ and you want to use a C library? If you make the C function
declaration,
float f(int a, char b);

the C++ compiler will decorate this name
to something like _f_int_char to support function overloading (and
type-safe linkage). However, the C compiler that compiled your C library has
most definitely not decorated the name, so its internal name will be
_f. Thus, the linker will not be able to resolve your C++ calls to
f( ).
The escape mechanism provided in C++ is
the alternate linkage specification, which was produced in the language
by overloading the extern
keyword. The extern is followed by a string that
specifies the linkage you want for the declaration, followed by the
declaration:
extern "C" float f(int a, char b);

This tells the compiler to give C linkage
to f( ) so that the compiler doesn't decorate the
name. The only two types of
linkage specifications supported by the standard are “C” and
“C++,” but compiler vendors have the option of supporting
other languages in the same way.
If you have a group of declarations with
alternate linkage, put them inside braces, like this:
extern "C" {
  float f(int a, char b);
  double d(int a, char b);
}

Or, for a header file,
extern "C" {
#include "Myheader.h"
}

Most C++ compiler vendors handle the
alternate linkage specifications inside their header files that work with both C
and C++, so you don't have to worry about
it.
10-6 - 
Summary
The static keyword can be
confusing because in some situations it controls the location of storage, and in
others it controls visibility and linkage of a name.
With the introduction of C++ namespaces,
you have an improved and more flexible alternative to control the proliferation
of names in large projects.
The use of static inside classes
is one more way to control names in a program. The names do not clash with
global names, and the visibility and access is kept within the program, giving
you greater control in the maintenance of your
code.
10-7 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
www.BruceEckel.com.
		Create a function with a
static variable that is a pointer (with a default argument of zero). When the
caller provides a value for this argument it is used to point at the beginning
of an array of int. If you call the function with a zero argument (using
the default argument), the function returns the next value in the array, until
it sees a “-1” value in the array (to act as an end-of-array
indicator). Exercise this function in
main( ).
		Create
a function that returns the next value in a Fibonacci sequence every time you
call it. Add an argument that is a bool with a default value of
false such that when you give the argument with true it
“resets” the function to the beginning of the Fibonacci sequence.
Exercise this function in
main( ).
		Create
a class that holds an array of ints. Set the size of the array using
static const int inside the class. Add a const int
variable, and initialize it in the constructor initializer list; make the
constructor inline. Add a static int member variable and
initialize it to a specific value. Add a static member function that
prints the static data member. Add an inline member function
called print( ) to print out all the values in the array and to call
the static member function. Exercise this class in
main( ).
		Create
a class called Monitor that keeps track of the number of times that its
incident( ) member function has been called. Add a
print( ) member function that displays the number of incidents. Now
create a global function (not a member function) containing a staticMonitor object. Each time you call the function it should call
incident( ),then print( )
to display the incident count. Exercise the
function in
main( ).
		Modify
the Monitor class from Exercise 4 so that you can
decrement( ) the incident count. Make a class Monitor2 that
takes as a constructor argument a pointer to a Monitor1, and which stores
that pointer and calls incident( ) and print( ). In the
destructor for Monitor2, call decrement( ) and
print( ). Now make a static object of Monitor2 inside
a function. Inside main( ), experiment with calling the function and
not calling the function to see what happens with the destructor of
Monitor2.
		Make
a global object of Monitor2 and see what
happens.
		Create a
class with a destructor that prints a message and then calls
exit( ). Create a global object of this class and see what
happens.
		In
StaticDestructors.cpp, experiment with the order of constructor and
destructor calls by calling f( ) and g( )  inside
main( ) in different orders. Does your compiler get it
right?
		In
StaticDestructors.cpp, test the default error handling of your
implementation by turning the original definition of out into an
extern declaration and putting the actual definition after the definition
of a (whose Obj constructor sends information to out). Make
sure there's nothing else important running on your machine when you run
the program or that your machine will handle faults
robustly.
		Prove that
file static variables in header files don't clash with each other when
included in more than one cpp
file.
		Create a
simple class containing an int, a constructor that initializes the
int from its argument, a member function to set the int from its
argument, and a print( ) function that prints the int. Put
your class in a header file, and include the header file in two cpp
files. In one cpp file make an instance of your class, and in the other
declare that identifier extern and test it inside main( ).
Remember, you'll have to link the two object files or else the linker
won't find the
object.
		Make the
instance of the object in Exercise 11 static and verify that it cannot be
found by the linker because of
this.
		Declare a
function in a header file. Define the function in one cpp file and call
it inside main( ) in a second cpp file. Compile and verify
that it works. Now change the function definition so that it is static
and verify that the linker cannot find
it.
		Modify
Volatile.cpp from Chapter 8 to make comm::isr( ) something
that could actually work as an interrupt service routine. Hint: an interrupt
service routine doesn't take any
arguments.
		Write and
compile a simple program that uses the auto and register
keywords.
		Create a
header file containing a namespace. Inside the namespace create
several function declarations. Now create a second header file that includes the
first one and continues the namespace, adding several more function
declarations. Now create a cpp file that includes the second header file.
Alias your namespace to another (shorter) name. Inside a function definition,
call one of your functions using scope resolution. Inside a separate function
definition, write a using directive to introduce your namespace into that
function scope, and show that you don't need scope resolution to call the
functions from your
namespace.
		Create a
header file with an unnamed namespace. Include the header in two separate
cpp files and show that an unnamed space is unique for each translation
unit.
		Using the
header file from Exercise 17, show that the names in an unnamed namespace are
automatically available in a translation unit without
qualification.
		Modify
FriendInjection.cpp to add a definition for the friend function and to
call the function inside
main( ).
		In
Arithmetic.cpp, demonstrate that the using directive does not
extend outside the function in which the directive was
made.
		Repair the
problem in OverridingAmbiguity.cpp, first with scope resolution, then
instead with a using declaration that forces the compiler to choose one
of the identical function
names.
		In two header
files, create two namespaces, each containing a class (with all inline
definitions) with a name identical to that in the other namespace. Create a
cpp file that includes both header files. Create a function, and inside
the function use the using directive to introduce both namespaces. Try
creating an object of the class and see what happens. Make the using
directives global (outside of the function) to see if it makes any difference.
Repair the problem using scope resolution, and create objects of both
classes.
		Repair the
problem in Exercise 22 with a using declaration that forces the compiler
to choose one of the identical class
names.
		Extract the
namespace declarations in BobsSuperDuperLibrary.cpp and
UnnamedNamespaces.cpp and put them in separate header files, giving the
unnamed namespace a name in the process. In a third header file create a new
namespace that combines the elements of the other two namespaces with
using declarations. In main( ), introduce your new namespace
with a using directive and access all the elements of your
namespace.
		Create a
header file that includes <string> and <iostream> but
does not use any using directives or using declarations. Add
“include guards” as you've seen in the header files in this
book. Create a class with all inline functions that contains a string
member, with a constructor that initializes that string from its argument
and a print( ) function that displays the string. Create a
cpp file and exercise your class in
main( ).
		Create
a class containing a static double and long. Write a
static member function that prints out the
values.
		Create a
class containing an int, a constructor that initializes the int
from its argument, and a print( ) function to display the
int. Now create a second class that contains a static object of
the first one. Add a static member function that calls the static
object's print( ) function. Exercise your class in
main( ).
		Create
a class containing both a const and a non-const static
array of int. Write static methods to print out the arrays.
Exercise your class in
main( ).
		Create
a class containing a string, with a constructor that initializes the
string from its argument, and a print( ) function to display
the string. Create another class that contains both const and
non-const static arrays of objects of the first class, and
static methods to print out these arrays. Exercise this second class in
main( ).

		Create a
struct that contains an int and a default constructor that
initializes the int to zero. Make this struct local to a function.
Inside that function, create an array of objects of your struct and
demonstrate that each int in the array has automatically been initialized
to zero.
		Create a
class that represents a printer connection, and that only allows you to have one
printer.
		In a header
file, create a class Mirror that contains two data members: a pointer to
a Mirror object and a bool. Give it two constructors: the default
constructor initializes the bool to true and the Mirror
pointer to zero. The second constructor takes as an argument a pointer to a
Mirror object, which it assigns to the object's internal pointer;
it sets the bool to false. Add a member function
test( ): if the object's pointer is nonzero, it returns the
value of test( ) called through the pointer. If the pointer is zero,
it returns the bool. Now create five cpp files, each of which
includes the Mirror header. The first cpp file defines a global
Mirror object using the default constructor. The second file declares the
object in the first file as extern, and defines a global Mirror
object using the second constructor, with a pointer to the first object.
Keep doing this until you reach the last file, which will also contain a global
object definition. In that file, main( ) should call the
test( ) function and report the result. If the result is
true, find out how to change the linking order for your linker and change
it until the result is
false.
		Repair
the problem in Exercise 32 using technique one shown in this
book.
		Repair the
problem in Exercise 32 using technique two shown in this
book.
		Without
including a header file, declare the function puts( ) from the
Standard C Library. Call this function from
main( ).


11 - References &  the Copy-Constructor
References are like constant
pointers that are automatically dereferenced by the compiler. 
Although references
also exist in Pascal, the C++ version was taken from the
Algol language. They are essential in C++ to support the syntax of operator
overloading (see Chapter 12),
but they are also a general convenience to control the way arguments are passed
into and out of functions.
This chapter will first look briefly at
the differences between pointers in C and C++, then
introduce references. But the bulk of the chapter will delve into a rather
confusing issue for the new C++ programmer: the
copy-constructor, a special
constructor (requiring references) that makes a new object from an existing
object of the same type. The copy-constructor is used by the compiler to pass
and return objects by value
into and out of
functions.
Finally, the somewhat obscure C++
pointer-to-member feature is
illuminated.
11-1 - 
Pointers in C++
The most important difference between
pointers in C and those in C++ is that
C++ is a
more strongly typed language. This stands out where
void*
is concerned. C doesn't let you casually assign a pointer of one type to
another, but it does allow you to accomplish this through a void*.
Thus,
bird* b;
rock* r;
void* v;
v = r;
b = v;

Because this “feature” of C
allows you to quietly treat any type like any other type, it leaves a big
hole in the type system. C++ doesn't allow this;
the compiler gives you an error message, and if you really want to treat one
type as another, you must make it explicit, both to the compiler and to the
reader, using a cast. (Chapter 3 introduced C++'s improved
“explicit” casting
syntax.)
11-2 - 
References in C++
A reference
(&) is like a constant pointer that is
automatically dereferenced. It is usually used for function argument lists
and function return
values. But you can also make a
free-standing reference. For
example,
//: C11:FreeStandingReferences.cpp
#include <iostream>
using namespace std;
 
// Ordinary free-standing reference:
int y;
int& r = y;
// When a reference is created, it must 
// be initialized to a live object. 
// However, you can also say:
const int& q = 12;  // (1)
// References are tied to someone else's storage:
int x = 0;          // (2)
int& a = x;         // (3)
int main() {
  cout << "x = " << x << ", a = " << a << endl;
  a++;
  cout << "x = " << x << ", a = " << a << endl;
} ///:~

In line (1), the compiler allocates a
piece of storage, initializes it with the value 12, and ties the reference to
that piece of storage. The point is that any reference must be tied to someone
else's piece of storage. When you access a reference, you're
accessing that storage. Thus, if you write lines like (2) and (3), then
incrementing a is actually incrementing x, as is shown in
main( ). Again, the easiest way to think about a reference is as a
fancy pointer. One advantage of this “pointer” is that you never
have to wonder whether it's been initialized (the compiler enforces it)
and how to dereference it (the compiler does it).
There are certain rules when using
references:
		A reference must be
initialized when it is created. (Pointers can be initialized at any
time.)
		Once a
reference is initialized to an object, it cannot be changed to refer to another
object. (Pointers can be pointed to another object at any
time.)
		You cannot
have NULL references. You must always be able to assume that a reference is
connected to a legitimate piece of
storage.

11-2-1 - 
References in functions
The most common place you'll see
references is as function arguments and return values. When a reference is used
as a function argument, any modification to the
reference inside the function will cause changes to the argument
outside the function. Of course, you could do the same thing by passing a
pointer, but a reference has much cleaner syntax. (You can think of a reference
as nothing more than a syntax convenience, if you want.)
If you return a
reference from a function, you must take the same care as if you return a
pointer from a function. Whatever the reference is connected to shouldn't
go away when the function returns, otherwise you'll be referring to
unknown memory.
Here's an example:
//: C11:Reference.cpp
// Simple C++ references
 
int* f(int* x) {
  (*x)++;
  return x; // Safe, x is outside this scope
}
 
int& g(int& x) {
  x++; // Same effect as in f()
  return x; // Safe, outside this scope
}
 
int& h() {
  int q;
//!  return q;  // Error
  static int x;
  return x; // Safe, x lives outside this scope
}
 
int main() {
  int a = 0;
  f(&a); // Ugly (but explicit)
  g(a);  // Clean (but hidden)
} ///:~

The call to f( )
doesn't have the convenience and cleanliness of using references, but
it's clear that an address is being passed. In the call to
g( ), an address is being passed (via a reference), but you
don't see it.

const references
The reference argument in
Reference.cpp works only when the argument is a non-const object.
If it is a const object, the function g( ) will not accept
the argument, which is actually a good thing, because the function does
modify the outside argument. If you know the function will respect the
constness of an object, making the argument a
const reference will allow the function to be
used in all situations. This means that, for built-in types, the function will
not modify the argument, and for user-defined types, the function will call only
const member functions, and won't modify any public data
members.
The use of const references in
function arguments is especially important because your function may receive a
temporary
object. This might have been
created as a return value of another function or explicitly by the user of your
function. Temporary objects are always const, so if you don't use a
const reference, that argument won't be accepted by the compiler.
As a very simple example,
//: C11:ConstReferenceArguments.cpp
// Passing references as const
 
void f(int&) {}
void g(const int&) {}
 
int main() {
//!  f(1); // Error
  g(1);
} ///:~

The call to f(1) causes a
compile-time error because the compiler must first create a reference. It does
so by allocating storage for an int, initializing it to one and producing
the address to bind to the reference. The storage must be a const
because changing it would make no sense - you can never get your hands on
it again. With all temporary objects you must make the same assumption: that
they're inaccessible. It's valuable for the compiler to tell you
when you're changing such data because the result would be lost
information.

Pointer references
In C, if you want to modify the
contents of the pointer rather than what it points to, your function
declaration looks like: 
void f(int**);

and you'd have to take the address
of the pointer when passing it in:
int i = 47;
int* ip = &i;
f(&ip);

With references in C++, the syntax is
cleaner. The function argument becomes a reference to a pointer, and you no
longer have to take the address of that pointer. Thus,
//: C11:ReferenceToPointer.cpp
#include <iostream>
using namespace std;
 
void increment(int*& i) { i++; }
 
int main() {
  int* i = 0;
  cout << "i = " << i << endl;
  increment(i);
  cout << "i = " << i << endl;
} ///:~

By running this program, you'll
prove to yourself that the pointer is incremented, not what it points
to.
11-2-2 - 
Argument-passing
guidelines
Your normal habit when passing an
argument to a function should be to pass by const reference. Although at
first this may seem like only an efficiency
concern (and you normally
don't want to concern yourself with efficiency tuning while you're
designing and assembling your program), there's more at stake: as
you'll see in the remainder of the chapter, a copy-constructor is required
to pass an object by value, and this isn't always
available.
The efficiency savings can be substantial
for such a simple habit: to pass an argument by value requires a constructor and
destructor call, but if you're not going to modify the argument then
passing by const reference only needs an address pushed on the
stack.
In fact, virtually the only time passing
an address isn't preferable is when you're going to do such
damage to an object that passing by value is the only safe approach (rather than
modifying the outside object, something the caller doesn't usually
expect). This is the subject of the next
section.
11-3 - 
The copy-constructor
Now that you understand the basics of the
reference in C++, you're ready to tackle one of the more confusing
concepts in the language: the
copy-constructor, often called
X(X&) (“X of X ref”). This constructor is essential to
control passing and returning of user-defined types by value during function
calls. It's so important, in fact, that the compiler will automatically
synthesize a copy-constructor if you don't provide one yourself, as you
will
see.
11-3-1 - 
Passing & returning by value
To understand the need for the
copy-constructor, consider the way C handles passing and returning variables by
value
during
function calls. If you declare a function and make a function
call,
int f(int x, char c);
int g = f(a, b);

how does the compiler know how to pass
and return those variables? It just knows! The range of the types it must deal
with is so small - char, int, float, double,
and their variations - that this information is built into the compiler.

If you figure out how to generate
assembly
code with your compiler and determine the statements generated by the function
call to f( ), you'll get the equivalent of:
push  b
push  a
call  f()
add  sp,4
mov  g, register a

This code has been cleaned up
significantly to make it generic; the expressions for b and a will
be different depending on whether the variables are global (in which case they
will be _b and _a) or local (the compiler will index them off the
stack pointer). This is also true for the expression for g. The
appearance of the call to f( ) will depend on your name-decoration
scheme, and “register a” depends on how the CPU registers are named
within your assembler. The logic behind the code, however, will remain the
same.
In C and C++, arguments are first pushed
on the stack from right to left, then the function call is made. The calling
code is responsible for cleaning the arguments off the stack (which accounts for
the add sp,4). But notice that to pass the arguments by value, the
compiler simply pushes copies on the stack - it knows how big they are and
that pushing those arguments makes accurate copies of them.
The return value of f( ) is
placed in a register. Again, the compiler knows everything there is to know
about the return value type because that type is built into the language, so the
compiler can return it by placing it in a register. With the primitive data
types in C, the simple act of copying the bits of the value is equivalent to
copying the object.

Passing & returning large
objects
But now consider user-defined types. If
you create a class and you want to pass an object of that class by value, how is
the compiler supposed to know what to do? This is not a type built into the
compiler; it's a type you have created.
To investigate this, you can start with a
simple structure that is clearly too large to return in
registers:
//: C11:PassingBigStructures.cpp
struct Big {
  char buf[100];
  int i;
  long d;
} B, B2;
 
Big bigfun(Big b) {
  b.i = 100; // Do something to the argument
  return b;
}
 
int main() {
  B2 = bigfun(B);
} ///:~

Decoding the assembly output is a little
more complicated here because most compilers use “helper” functions
instead of putting all functionality inline. In main( ), the call to
bigfun( ) starts as you might guess - the entire contents of
B is pushed on the stack. (Here, you might see some compilers load
registers with the address of the Big and its size, then call a helper
function to push the Big
onto the stack.)
In the previous code fragment, pushing
the arguments onto the stack was all that was required before making the
function call. In PassingBigStructures.cpp, however, you'll see an
additional action: the address of B2 is pushed before making the call,
even though it's obviously not an argument. To comprehend what's
going on here, you need to understand the constraints on the compiler when
it's making a function call.

Function-call stack
frame
When the compiler generates code for a
function call, it first pushes all the arguments on the stack, then makes the
call. Inside the function, code is generated to move the stack pointer down even
farther to provide storage for the function's local variables.
(“Down” is relative here; your machine may increment or decrement
the stack pointer during a push.) But during the assembly-language
CALL, the CPU pushes the address
in the program code where the function call came from, so the
assembly-language RETURN can use
that address to return to the calling point. This address is of course sacred,
because without it your program will get completely lost. Here's what the
stack frame looks like after the CALL and the allocation of local variable
storage in the function:
[image: ]
The code generated for the rest of the
function expects the memory to be laid out exactly this way, so that it can
carefully pick from the function arguments and local variables without touching
the return address. I shall call this block of memory, which is everything used
by a function in the process of the function call, the function
frame.
You might think it reasonable to try to
return values on the stack. The compiler could simply push it, and the function
could return an offset to indicate how far down in the stack the return value
begins.

Re-entrancy
The problem occurs because functions in C
and C++ support interrupts; that is, the languages are
re-entrant. They also support recursive function
calls. This means that at any point in the execution of a program an interrupt
can occur without breaking the program. Of course, the person who writes the
interrupt service routine (ISR) is responsible for
saving and restoring all the registers that are used in the ISR, but if the ISR
needs to use any memory further down on the stack, this must be a safe thing to
do. (You can think of an ISR as an ordinary function with no arguments and
void return value that saves and restores the CPU state. An ISR function
call is triggered by some hardware event instead of an explicit call from within
a program.)
Now imagine what would happen if an
ordinary function tried to return values on the stack. You can't touch any
part of the stack that's above the return address, so the function would
have to push the values below the return address. But when the assembly-language
RETURN is executed, the stack pointer must be pointing to the return address (or
right below it, depending on your machine), so right before the RETURN, the
function must move the stack pointer up, thus clearing off all its local
variables. If you're trying to return values on the stack below the return
address, you become vulnerable at that moment because an interrupt could come
along. The ISR would move the stack pointer down to hold its return address and
its local variables and overwrite your return value.
To solve this problem, the caller
could be responsible for allocating the extra storage on the stack for
the return values before calling the function. However, C was not designed this
way, and C++ must be compatible. As you'll see shortly, the C++ compiler
uses a more efficient scheme.
Your next idea might be to return the
value in some global data area, but this doesn't work either. Reentrancy
means that any function can be an interrupt routine for any other function,
including the same function you're currently inside. Thus, if you
put the return value in a global area, you might return into the same function,
which would overwrite that return value. The same logic applies to
recursion.
The only safe place to return values is
in the registers, so you're back to the problem of what to do when the
registers aren't large enough to hold the return value. The answer is to
push the address of the return value's destination on the stack as one of
the function arguments, and let the function copy the return information
directly into the destination. This not only solves all the problems, it's
more efficient. It's also the reason that, in
PassingBigStructures.cpp, the compiler pushes the address of B2
before the call to bigfun( ) in main( ). If you look at
the assembly output for bigfun( ), you can see it expects this
hidden argument and performs the copy to the destination inside the
function.

Bitcopy versus
initialization
So far, so good. There's a workable
process for passing and returning large simple structures. But notice that all
you have is a way to copy the bits from one place to another, which certainly
works fine for the primitive way that C looks at variables. But in C++ objects
can be much more sophisticated than a patch of bits; they have meaning. This
meaning may not respond well to having its bits copied.
Consider a simple example: a class that
knows how many objects of its type exist at any one time. From Chapter 10, you
know the way to do this is by including a static data
member:
//: C11:HowMany.cpp
// A class that counts its objects
#include <fstream>
#include <string>
using namespace std;
ofstream out("HowMany.out");
 
class HowMany {
  static int objectCount;
public:
  HowMany() { objectCount++; }
  static void print(const string& msg = "") {
    if(msg.size() != 0) out << msg << ": ";
    out << "objectCount = "
         << objectCount << endl;
  }
  ~HowMany() {
    objectCount--;
    print("~HowMany()");
  }
};
 
int HowMany::objectCount = 0;
 
// Pass and return BY VALUE:
HowMany f(HowMany x) {
  x.print("x argument inside f()");
  return x;
}
 
int main() {
  HowMany h;
  HowMany::print("after construction of h");
  HowMany h2 = f(h);
  HowMany::print("after call to f()");
} ///:~

The class HowMany contains a
static int objectCount and a static member function
print( ) to report the value of that objectCount, along with
an optional message argument. The constructor increments the count each time an
object is created, and the destructor decrements it.
The output, however, is not what you
would expect:
after construction of h: objectCount = 1
x argument inside f(): objectCount = 1
~HowMany(): objectCount = 0
after call to f(): objectCount = 0
~HowMany(): objectCount = -1
~HowMany(): objectCount = -2

After h is created, the object
count is one, which is fine. But after the call to f( ) you would
expect to have an object count of two, because h2 is now in scope as
well. Instead, the count is zero, which indicates something has gone horribly
wrong. This is confirmed by the fact that the two destructors at the end make
the object count go negative, something that should never
happen.
Look at the point inside
f( ), which occurs after the argument is passed by value. This means
the original object h exists outside the function frame, and
there's an additional object inside the function frame, which is
the copy that has been passed by value. However, the argument has been passed
using C's primitive notion of bitcopying, whereas the C++ HowMany
class requires true initialization to maintain its integrity, so the default
bitcopy fails to produce the desired effect.
When the local object goes out of scope
at the end of the call to f( ), the destructor is called, which
decrements objectCount, so outside the function, objectCount is
zero. The creation of h2 is also performed using a bitcopy, so the
constructor isn't called there either, and when h and h2 go
out of scope, their destructors cause the negative values of
objectCount.
11-3-2 - 
Copy-construction
The problem occurs because the compiler
makes an assumption about how to create a new object from an existing
object.
When you pass an object by
value, you create a new object, the passed object inside the function frame,
from an existing object, the original object outside the function frame. This is
also often true when returning an object from a function. In the expression

HowMany h2 = f(h);

h2, a previously unconstructed
object, is created from the return value of f( ), so again a new
object is created from an existing one.
The compiler's assumption is that
you want to perform this creation using a bitcopy, and in many cases this may
work fine, but in HowMany it doesn't fly because the meaning of
initialization goes beyond simply copying. Another common example occurs if the
class contains pointers - what do they point to, and should you copy them
or should they be connected to some new piece of memory?
Fortunately, you can intervene in this
process and prevent the compiler from doing a bitcopy. You do this by defining
your own function to be used whenever the compiler needs to make a new object
from an existing object. Logically enough, you're making a new object, so
this function is a constructor, and also logically enough, the single argument
to this constructor has to do with the object you're constructing from.
But that object can't be passed into the constructor by value because
you're trying to define the function that handles passing by value,
and syntactically it doesn't make sense to pass a pointer because, after
all, you're creating the new object from an existing object. Here,
references come to the rescue, so you take the reference of the source object.
This function is called the
copy-constructor and is
often referred to as X(X&), which is its appearance for a class
called X.
If you create a copy-constructor, the
compiler will not perform a bitcopy when creating a new object from an existing
one. It will always call your copy-constructor. So, if you don't create a
copy-constructor, the compiler will do something sensible, but you have the
choice of taking over complete control of the process.
Now it's possible to fix the
problem in HowMany.cpp:
//: C11:HowMany2.cpp
// The copy-constructor
#include <fstream>
#include <string>
using namespace std;
ofstream out("HowMany2.out");
 
class HowMany2 {
  string name; // Object identifier
  static int objectCount;
public:
  HowMany2(const string& id = "") : name(id) {
    ++objectCount;
    print("HowMany2()");
  }
  ~HowMany2() {
    --objectCount;
    print("~HowMany2()");
  }
  // The copy-constructor:
  HowMany2(const HowMany2& h) : name(h.name) {
    name += " copy";
    ++objectCount;
    print("HowMany2(const HowMany2&)");
  }
  void print(const string& msg = "") const {
    if(msg.size() != 0) 
      out << msg << endl;
    out << '\t' << name << ": "
        << "objectCount = "
        << objectCount << endl;
  }
};
 
int HowMany2::objectCount = 0;
 
// Pass and return BY VALUE:
HowMany2 f(HowMany2 x) {
  x.print("x argument inside f()");
  out << "Returning from f()" << endl;
  return x;
}
 
int main() {
  HowMany2 h("h");
  out << "Entering f()" << endl;
  HowMany2 h2 = f(h);
  h2.print("h2 after call to f()");
  out << "Call f(), no return value" << endl;
  f(h);
  out << "After call to f()" << endl;
} ///:~

There are a number of new twists thrown
in here so you can get a better idea of what's happening. First, the
string name acts as an object identifier when information about
that object is printed. In the constructor, you can put an identifier string
(usually the name of the object) that is copied to name using the
string constructor. The default = "" creates an empty
string. The constructor increments the objectCount as before, and
the destructor decrements it.
Next is the copy-constructor,
HowMany2(const HowMany2&). The copy-constructor can create a new
object only from an existing one, so the existing object's name is copied
to name, followed by the word “copy” so you can see where it
came from. If you look closely, you'll see that the call
name(h.name) in the constructor initializer list is actually calling the
string copy-constructor.
Inside the copy-constructor, the object
count is incremented just as it is inside the normal constructor. This means
you'll now get an accurate object count when passing and returning by
value.
The print( ) function has
been modified to print out a message, the object identifier, and the object
count. It must now access the name data of a particular object, so it can
no longer be a static member
function.
Inside main( ), you can see
that a second call to f( ) has been added. However, this call uses
the common C approach of ignoring the return value. But now that you know how
the value is returned (that is, code inside the function handles the
return process, putting the result in a destination whose address is passed as a
hidden argument), you might wonder what happens when the return value is
ignored. The output of the program will throw some illumination on
this.
Before showing the output, here's a
little program that uses iostreams to add line numbers to any
file:
//: C11:Linenum.cpp
//{T} Linenum.cpp
// Add line numbers
#include "../require.h"
#include <vector>
#include <string>
#include <fstream>
#include <iostream>
#include <cmath>
using namespace std;
 
int main(int argc, char* argv[]) {
  requireArgs(argc, 1, "Usage: linenum file\n"
    "Adds line numbers to file");
  ifstream in(argv[1]);
  assure(in, argv[1]);
  string line;
  vector<string> lines;
  while(getline(in, line)) // Read in entire file
    lines.push_back(line);
  if(lines.size() == 0) return 0;
  int num = 0;
  // Number of lines in file determines width:
  const int width = 
    int(log10((double)lines.size())) + 1;
  for(int i = 0; i < lines.size(); i++) {
    cout.setf(ios::right, ios::adjustfield);
    cout.width(width);
    cout << ++num << ") " << lines[i] << endl;
  }
} ///:~

The entire file is read into a
vector<string>, using the same code that you've seen earlier
in the book. When printing the line numbers, we'd like all the lines to be
aligned with each other, and this requires adjusting for the number of lines in
the file so that the width allowed for the line numbers is consistent. We can
easily determine the number of lines using vector::size( ), but what
we really need to know is whether there are more than 10 lines, 100 lines, 1,000
lines, etc. If you take the logarithm, base 10, of the
number of lines in the file, truncate it to an int and add one to the
value, you'll find out the maximum width that your line count will
be.
You'll notice a couple of strange
calls inside the for loop:
setf( ) and
width( ). These are
ostream calls that allow you to control, in this case, the justification
and width of the output. However, they must be called each time a line is output
and that is why they are inside the for loop. Volume 2 of this book has
an entire chapter explaining iostreams that will tell you more about these calls
as well as other ways to control iostreams.
When Linenum.cpp is applied to
HowMany2.out, the result is
 1) HowMany2()
 2)   h: objectCount = 1
 3) Entering f()
 4) HowMany2(const HowMany2&)
 5)   h copy: objectCount = 2
 6) x argument inside f()
 7)   h copy: objectCount = 2
 8) Returning from f()
 9) HowMany2(const HowMany2&)
10)   h copy copy: objectCount = 3
11) ~HowMany2()
12)   h copy: objectCount = 2
13) h2 after call to f()
14)   h copy copy: objectCount = 2
15) Call f(), no return value
16) HowMany2(const HowMany2&)
17)   h copy: objectCount = 3
18) x argument inside f()
19)   h copy: objectCount = 3
20) Returning from f()
21) HowMany2(const HowMany2&)
22)   h copy copy: objectCount = 4
23) ~HowMany2()
24)   h copy: objectCount = 3
25) ~HowMany2()
26)   h copy copy: objectCount = 2
27) After call to f()
28) ~HowMany2()
29)   h copy copy: objectCount = 1
30) ~HowMany2()
31)   h: objectCount = 0

As you would expect, the first
thing that happens is that the normal constructor is called for h, which
increments the object count to one. But then, as f( ) is entered,
the copy-constructor is quietly called by the compiler to perform the
pass-by-value. A new object is created, which is the copy of h (thus the
name “h copy”) inside the function frame of f( ), so the
object count becomes two, courtesy of the copy-constructor.
Line eight indicates the beginning of the
return from f( ). But before the local variable “h copy”
can be destroyed (it goes out of scope at the end of the function), it must be
copied into the return value, which happens to be h2. A previously
unconstructed object (h2) is created from an existing object (the local
variable inside f( )), so of course the copy-constructor is used
again in line nine. Now the name becomes “h copy copy” for
h2's identifier because it's being copied from the copy that
is the local object inside f( ). After the object is returned, but
before the function ends, the object count becomes temporarily three, but then
the local object “h copy” is destroyed. After the call to
f( ) completes in line 13, there are only two objects, h and
h2, and you can see that h2 did indeed end up as “h copy
copy.”

Temporary objects
Line 15 begins the call to f(h),
this time ignoring the return value. You can see in line 16 that the
copy-constructor is called just as before to pass the argument in. And also, as
before, line 21 shows the copy-constructor is called for the return value. But
the copy-constructor must have an address to work on as its destination (a
this pointer). Where does this address come
from?
It turns out the compiler can create a
temporary object whenever it needs one to properly evaluate an expression. In
this case it creates one you don't even see to act as the destination for
the ignored return value of f( ). The lifetime of this temporary
object is as short as possible so the landscape
doesn't get cluttered up with temporaries waiting to be destroyed and
taking up valuable resources. In some cases, the temporary might immediately be
passed to another function, but in this case it isn't needed after the
function call, so as soon as the function call ends by calling the destructor
for the local object (lines 23 and 24), the temporary object is destroyed (lines
25 and 26).
Finally, in lines 28-31, the h2
object is destroyed, followed by h, and the object count goes correctly
back to
zero.
11-3-3 - 
Default
copy-constructor
Because the copy-constructor implements
pass and return by value, it's important that the compiler creates one for
you in the case of simple structures - effectively, the same thing it does
in C. However, all you've seen so far is the default primitive behavior: a
bitcopy.
When more complex types are involved, the
C++ compiler will still automatically create a copy-constructor if you
don't make one. Again, however, a bitcopy
doesn't make sense, because it doesn't
necessarily implement the proper meaning.
Here's an example to show the more
intelligent approach the compiler takes. Suppose you create a new class composed
of objects of several existing classes. This is called, appropriately enough,
composition,
and it's one of the ways you can make new classes from existing classes.
Now take the role of a naive user who's trying to solve a problem quickly
by creating a new class this way. You don't know about copy-constructors,
so you don't create one. The example demonstrates what the compiler does
while creating the default copy-constructor for your new class:
//: C11:DefaultCopyConstructor.cpp
// Automatic creation of the copy-constructor
#include <iostream>
#include <string>
using namespace std;
 
class WithCC { // With copy-constructor
public:
  // Explicit default constructor required:
  WithCC() {}
  WithCC(const WithCC&) {
    cout << "WithCC(WithCC&)" << endl;
  }
};
 
class WoCC { // Without copy-constructor
  string id;
public:
  WoCC(const string& ident = "") : id(ident) {}
  void print(const string& msg = "") const {
    if(msg.size() != 0) cout << msg << ": ";
    cout << id << endl;
  }
};
 
class Composite {
  WithCC withcc; // Embedded objects
  WoCC wocc;
public:
  Composite() : wocc("Composite()") {}
  void print(const string& msg = "") const {
    wocc.print(msg);
  }
};
 
int main() {
  Composite c;
  c.print("Contents of c");
  cout << "Calling Composite copy-constructor"
       << endl;
  Composite c2 = c;  // Calls copy-constructor
  c2.print("Contents of c2");
} ///:~

The class WithCC contains a
copy-constructor, which simply announces that it has been called, and this
brings up an interesting issue. In the class Composite, an object of
WithCC is created using a default constructor. If there were no
constructors at all in WithCC, the compiler would automatically create a
default constructor, which would
do nothing in this case. However, if you add a copy-constructor, you've
told the compiler you're going to handle constructor creation, so it no
longer creates a default constructor for you and will complain unless you
explicitly create a default constructor as was done for
WithCC.
The class WoCC has no
copy-constructor, but its constructor will store a message in an internal
string that can be printed out using print( ). This
constructor is explicitly called in Composite'sconstructor
initializer list (briefly introduced in Chapter 8 and covered fully in Chapter
14). The reason for this becomes apparent later.
The class Composite has member
objects of both WithCC and WoCC (note the embedded object
wocc is initialized in the constructor-initializer list, as it must be),
and no explicitly defined copy-constructor. However, in main( ) an
object is created using the copy-constructor in the definition:
Composite c2 = c;

The copy-constructor for Composite
is created automatically by the compiler, and the output of the program
reveals the way that it is created:
Contents of c: Composite()
Calling Composite copy-constructor
WithCC(WithCC&)
Contents of c2: Composite()

To create a copy-constructor for a class
that uses composition (and
inheritance,
which is introduced in Chapter 14), the compiler recursively calls the
copy-constructors for all the member objects and base classes. That is, if the
member object also contains another object, its copy-constructor is also called.
So in this case, the compiler calls the copy-constructor for WithCC. The
output shows this constructor being called. Because WoCC has no
copy-constructor, the compiler creates one for it that just performs a bitcopy,
and calls that inside the Composite copy-constructor. The call to
Composite::print( ) in main shows that this happens because the
contents of c2.wocc are identical to the contents of c.wocc. The
process the compiler goes through to synthesize a copy-constructor is called
memberwise
initialization.
It's always best to create your own
copy-constructor instead of letting the compiler do it for you. This guarantees
that it will be under your
control.
11-3-4 - 
Alternatives to
copy-construction
At this point your head may be swimming,
and you might be wondering how you could have possibly written a working class
without knowing about the copy-constructor. But remember: You need a
copy-constructor only if you're going to pass an object of your class
by value. If that never happens, you don't need a
copy-constructor.

Preventing pass-by-value
“But,” you say, “if I
don't make a copy-constructor, the compiler will create one for me. So how
do I know that an object will never be passed by value?”
There's a simple technique for
preventing pass-by-value: declare a private
copy-constructor. You don't even need to create a
definition, unless one of your member functions or a friend function
needs to perform a pass-by-value. If the user tries to pass or return the object
by value, the compiler will produce an error message because the
copy-constructor is private. It can no longer create a default
copy-constructor because you've explicitly stated that you're taking
over that job.
Here's an example:
//: C11:NoCopyConstruction.cpp
// Preventing copy-construction
 
class NoCC {
  int i;
  NoCC(const NoCC&); // No definition
public:
  NoCC(int ii = 0) : i(ii) {}
};
 
void f(NoCC);
 
int main() {
  NoCC n;
//! f(n); // Error: copy-constructor called
//! NoCC n2 = n; // Error: c-c called
//! NoCC n3(n); // Error: c-c called
} ///:~

Notice the use of the more general form

NoCC(const NoCC&);

using the const.

Functions that modify outside
objects
Reference syntax is nicer to use than
pointer syntax, yet it clouds the meaning for the reader. For example, in the
iostreams library one overloaded version of the
get( ) function
takes a char& as an argument, and the whole point of the function is
to modify its argument by inserting the result of the get( ).
However, when you read code using this function it's not immediately
obvious to you that the outside object is being modified:
char c;
cin.get(c);

Instead, the function call looks like a
pass-by-value, which suggests the outside object is not
modified.
Because of this, it's probably
safer from a code maintenance standpoint to use pointers when you're
passing the address of an argument to modify. If you always pass
addresses as const references
except
when you intend to modify the outside object via the address, where you pass by
non-const pointer, then your code is far easier for the reader to
follow.
11-4 - 
Pointers to members
A pointer is a variable that holds the
address of some location. You can change what a pointer selects at runtime, and
the destination of the pointer can be either data or a function. The C++
pointer-to-member follows this same concept, except that what it selects
is a location inside a class. The dilemma here is that a pointer needs an
address, but there is no “address” inside a class; selecting a
member of a class means offsetting into that class. You can't produce an
actual address until you combine that offset with the starting address of a
particular object. The syntax of pointers to members requires that you select an
object at the same time you're dereferencing the pointer to
member.
To understand this syntax, consider a
simple structure, with a pointer sp and an object so for this
structure. You can select members with the syntax shown:
//: C11:SimpleStructure.cpp
struct Simple { int a; };
int main() {
  Simple so, *sp = &so;
  sp->a;
  so.a;
} ///:~

Now suppose you have an ordinary pointer
to an integer, ip. To access what ip is pointing to, you
dereference the pointer with a ‘*':
*ip = 4;

Finally, consider what happens if you
have a pointer that happens to point to something inside a class object, even if
it does in fact represent an offset into the object. To access what it's
pointing at, you must dereference it with *. But it's an offset
into an object, so you must also refer to that particular object. Thus, the
* is combined with the object dereference. So the new syntax
becomes ->* for a pointer to an object,
and .* for the object or a reference, like
this:
objectPointer->*pointerToMember = 47;
object.*pointerToMember = 47;

Now, what is the syntax for defining
pointerToMember? Like any pointer, you have to say what type it's
pointing at, and you use a * in the definition. The only difference is
that you must say what class of objects this pointer-to-member is used with. Of
course, this is accomplished with the name of the class and the scope resolution
operator. Thus,
int ObjectClass::*pointerToMember;

defines a pointer-to-member variable
called pointerToMember that points to any int inside
ObjectClass. You can also initialize the pointer-to-member when you
define it (or at any other time):
int ObjectClass::*pointerToMember = &ObjectClass::a;

There is actually no
“address” of ObjectClass::a because you're just
referring to the class and not an object of that class. Thus,
&ObjectClass::a can be used only as pointer-to-member
syntax.
Here's an example that shows how to
create and use pointers to data members:
//: C11:PointerToMemberData.cpp
#include <iostream>
using namespace std;
 
class Data {
public:  
  int a, b, c; 
  void print() const {
    cout << "a = " << a << ", b = " << b
         << ", c = " << c << endl;
  }
};
 
int main() {
  Data d, *dp = &d;
  int Data::*pmInt = &Data::a;
  dp->*pmInt = 47;
  pmInt = &Data::b;
  d.*pmInt = 48;
  pmInt = &Data::c;
  dp->*pmInt = 49;
  dp->print();
} ///:~

Obviously, these are too awkward to use
anywhere except for special cases (which is exactly what they were intended
for).
Also, pointers to members are quite
limited: they can be assigned only to a specific location inside a class. You
could not, for example, increment or compare them as you can with ordinary
pointers.
11-4-1 - 
Functions
A similar exercise produces the
pointer-to-member syntax for member functions. A pointer to a function
(introduced at the end of Chapter 3) is defined like this:
int (*fp)(float);

The parentheses around (*fp) are
necessary to force the compiler to evaluate the definition properly. Without
them this would appear to be a function that returns an int*.

Parentheses also play an important role
when defining and using pointers to member functions. If you have a function
inside a class, you define a pointer to that member function by inserting the
class name and scope resolution operator into an ordinary function pointer
definition:
//: C11:PmemFunDefinition.cpp
class Simple2 { 
public: 
  int f(float) const { return 1; }
};
int (Simple2::*fp)(float) const;
int (Simple2::*fp2)(float) const = &Simple2::f;
int main() {
  fp = &Simple2::f;
} ///:~

In the definition for fp2 you can
see that a pointer to member function can also be initialized when it is
created, or at any other time. Unlike non-member functions, the & is
not optional when taking the address of a member function. However, you
can give the function identifier without an argument list, because overload
resolution can be determined by the type of the pointer to member.


An example
The value of a pointer is that you can
change what it points to at runtime, which provides an important flexibility in
your programming because through a pointer you can select or change
behavior at runtime. A pointer-to-member is no different; it allows you
to choose a member at runtime. Typically, your classes will only have member
functions publicly visible (data members are usually considered part of the
underlying implementation), so the following example selects member functions at
runtime.
//: C11:PointerToMemberFunction.cpp
#include <iostream>
using namespace std;
 
class Widget {
public:
  void f(int) const { cout << "Widget::f()\n"; }
  void g(int) const { cout << "Widget::g()\n"; }
  void h(int) const { cout << "Widget::h()\n"; }
  void i(int) const { cout << "Widget::i()\n"; }
};
 
int main() {
  Widget w;
  Widget* wp = &w;
  void (Widget::*pmem)(int) const = &Widget::h;
  (w.*pmem)(1);
  (wp->*pmem)(2);
} ///:~

Of course, it isn't particularly
reasonable to expect the casual user to create such complicated expressions. If
the user must directly manipulate a pointer-to-member, then a typedef is
in order. To really clean things up, you can use the pointer-to-member as part
of the internal implementation mechanism. Here's the preceding example
using a pointer-to-member inside the class. All the user needs to do is
pass a number in to select a
function.(48)
//: C11:PointerToMemberFunction2.cpp
#include <iostream>
using namespace std;
 
class Widget {
  void f(int) const { cout << "Widget::f()\n"; }
  void g(int) const { cout << "Widget::g()\n"; }
  void h(int) const { cout << "Widget::h()\n"; }
  void i(int) const { cout << "Widget::i()\n"; }
  enum { cnt = 4 };
  void (Widget::*fptr[cnt])(int) const;
public:
  Widget() {
    fptr[0] = &Widget::f; // Full spec required
    fptr[1] = &Widget::g;
    fptr[2] = &Widget::h;
    fptr[3] = &Widget::i;
  }
  void select(int i, int j) {
    if(i < 0 || i >= cnt) return;
    (this->*fptr[i])(j);
  }
  int count() { return cnt; }
};
 
int main() {
  Widget w;
  for(int i = 0; i < w.count(); i++)
    w.select(i, 47);
} ///:~

In the class interface and in
main( ), you can see that the entire implementation, including the
functions, has been hidden away. The code must even ask for the
count( ) of functions. This way, the class implementer can change
the quantity of functions in the underlying implementation without affecting the
code where the class is used.
The initialization of the
pointers-to-members in the constructor may seem overspecified. Shouldn't
you be able to say
fptr[1] = &g;

because the name g occurs in the
member function, which is automatically in the scope of the class? The problem
is this doesn't conform to the pointer-to-member syntax, which is required
so everyone, especially the compiler, can figure out what's going on.
Similarly, when the pointer-to-member is dereferenced, it seems
like
(this->*fptr[i])(j);

is also over-specified; this looks
redundant. Again, the syntax requires that a pointer-to-member always be bound
to an object when it is
dereferenced.
11-5 - 
Summary
Pointers in C++ are almost identical to
pointers in C, which is good. Otherwise, a lot of C code wouldn't compile
properly under C++. The only compile-time errors you will produce occur with
dangerous assignments. If these are in fact what are intended, the compile-time
errors can be removed with a simple (and explicit!) cast.
C++ also adds the reference from
Algol and Pascal, which is like a constant pointer that is automatically
dereferenced by the compiler. A reference holds an address, but you treat it
like an object. References are essential for clean syntax with operator
overloading (the subject of the next chapter), but they also add syntactic
convenience for passing and returning objects for ordinary
functions.
The copy-constructor takes a reference to
an existing object of the same type as its argument, and it is used to create a
new object from an existing one. The compiler automatically calls the
copy-constructor when you pass or return an object by value. Although the
compiler will automatically create a copy-constructor for you, if you think one
will be needed for your class, you should always define it yourself to ensure
that the proper behavior occurs. If you don't want the object passed or
returned by value, you should create a private
copy-constructor.
Pointers-to-members have the same
functionality as ordinary pointers: You can choose a particular region of
storage (data or function) at runtime. Pointers-to-members just happen to work
with class members instead of with global data or functions. You get the
programming flexibility that allows you to change behavior at
runtime.
11-6 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from www.BruceEckel.com.

		Turn the “bird &
rock” code fragment at the beginning of this chapter into a C program
(using structs for the data types), and show that it compiles. Now try to
compile it with the C++ compiler and see what
happens.
		Take the
code fragments in the beginning of the section titled “References in
C++” and put them into a main( ). Add statements to print
output so that you can prove to yourself that references are like pointers that
are automatically
dereferenced.
		Write
a program in which you try to (1) Create a reference that is not initialized
when it is created. (2) Change a reference to refer to another object after it
is initialized. (3) Create a NULL
reference.
		Write a
function that takes a pointer argument, modifies what the pointer points to, and
then returns the destination of the pointer as a
reference.
		Create a
class with some member functions, and make that the object that is pointed to by
the argument of Exercise 4. Make the pointer a const and make some of the
member functions const and prove that you can only call the const
member functions inside your function. Make the argument to your function a
reference instead of a
pointer.
		Take the
code fragments at the beginning of the section titled “Pointer
references” and turn them into a
program.
		Create a
function that takes an argument of a reference to a pointer to a pointer and
modifies that argument. In main( ), call the
function.
		Create a
function that takes a char& argument and modifies that argument. In
main( ), print out a char variable, call your function for
that variable, and print it out again to prove to yourself that it has been
changed. How does this affect program
readability?
		Write a
class that has a const member function and a non-const member
function. Write three functions that take an object of that class as an
argument; the first takes it by value, the second by reference, and the third by
const reference. Inside the functions, try to call both member functions
of your class and explain the
results.
		(Somewhat
challenging) Write a simple function that takes an int as an argument,
increments the value, and returns it. In main( ), call your
function. Now discover how your compiler generates assembly code and trace
through the assembly statements so that you understand how arguments are passed
and returned, and how local variables are indexed off the
stack.
		Write a
function that takes as its arguments a char, int, float,
and double. Generate assembly code with your compiler and find the
statements that push the arguments on the stack before a function
call.
		Write a
function that returns a double. Generate assembly code and determine how
the value is
returned.
		Produce
assembly code for PassingBigStructures.cpp. Trace through and demystify
the way your compiler generates code to pass and return large
structures.
		Write a
simple recursive function that decrements its argument and returns zero if the
argument becomes zero, otherwise it calls itself. Generate assembly code for
this function and explain how the way that the assembly code is created by the
compiler supports
recursion.
		Write
code to prove that the compiler automatically synthesizes a copy-constructor if
you don't create one yourself. Prove that the synthesized copy-constructor
performs a bitcopy of primitive types and calls the copy-constructor of
user-defined
types.
		Write a class
with a copy-constructor that announces itself to cout. Now create a
function that passes an object of your new class in by value and another one
that creates a local object of your new class and returns it by value. Call
these functions to prove to yourself that the copy-constructor is indeed quietly
called when passing and returning objects by value.

		Create a class that
contains a double*. The constructor initializes the double* by
calling new double and assigning a value to the resulting storage from
the constructor argument. The destructor prints the value that's pointed
to, assigns that value to -1, calls delete for the storage, and then sets
the pointer to zero. Now create a function that takes an object of your class by
value, and call this function in main( ). What happens? Fix the
problem by writing a
copy-constructor.
		Create
a class with a constructor that looks like a copy-constructor, but that has an
extra argument with a default value. Show that this is still used as the
copy-constructor.
		Create
a class with a copy-constructor that announces itself. Make a second class
containing a member object of the first class, but do not create a
copy-constructor. Show that the synthesized copy-constructor in the second class
automatically calls the copy-constructor of the first
class.
		Create a very
simple class, and a function that returns an object of that class by value.
Create a second function that takes a reference to an object of your class. Call
the first function as the argument of the second function, and demonstrate that
the second function must use a const reference as its
argument.
		Create a
simple class without a copy-constructor, and a simple function that takes an
object of that class by value. Now change your class by adding a private
declaration (only) for the copy-constructor. Explain what happens when your
function is
compiled.
		This
exercise creates an alternative to using the copy-constructor. Create a class
X and declare (but don't define) a private copy-constructor.
Make a public clone( ) function as a const member function
that returns a copy of the object that is created using new. Now write a
function that takes as an argument a const X& and clones a local copy
that can be modified. The drawback to this approach is that you are responsible
for explicitly destroying the cloned object (using delete) when
you're done with
it.
		Explain
what's wrong with both Mem.cpp and MemTest.cpp from Chapter
7. Fix the
problem.
		Create a
class containing a double and a print( ) function that prints
the double. In main( ), create pointers to members for both
the data member and the function in your class. Create an object of your class
and a pointer to that object, and manipulate both class elements via your
pointers to members, using both the object and the pointer to the
object.
		Create a
class containing an array of int. Can you index through this array using
a pointer to
member?
		Modify
PmemFunDefinition.cpp by adding an overloaded member function
f( ) (you can determine the argument list that causes the overload).
Now make a second pointer to member, assign it to the overloaded version of
f( ), and call the function through that pointer. How does the
overload resolution happen in this
case?
		Start with
FunctionTable.cpp from Chapter 3. Create a class that contains a
vector of pointers to functions, with add( ) and
remove( ) member functions to add and remove pointers to functions.
Add a run( ) function that moves through the vector and calls
all of the
functions.
		Modify
the above Exercise 27 so that it works with pointers to member functions
instead.


12 - Operator
Overloading
Operator overloading
is just “syntactic
sugar,” which means it is
simply another way for you to make a function call.
The difference is that the arguments for
this function don't appear inside parentheses, but instead they surround
or are next to characters you've always thought of as immutable
operators.
There are two differences between the use
of an operator and an ordinary function call. The syntax is different; an
operator is often “called” by placing it between or sometimes after
the arguments. The second difference is that the compiler determines which
“function” to call. For instance, if you are using the operator
+ with floating-point arguments, the compiler “calls” the
function to perform floating-point addition (this “call” is
typically the act of inserting in-line code, or a floating-point-processor
instruction). If you use operator + with a floating-point number and an
integer, the compiler “calls” a special function to turn the
int into a float, and then “calls” the floating-point
addition code.
But in C++, it's possible to define
new operators that work with classes. This definition is just like an ordinary
function definition except that the name of the function consists of the keyword
operator followed by the operator. That's
the only difference, and it becomes a function like any
other function, which the compiler calls when it sees the appropriate
pattern.
12-1 - 
Warning & reassurance
It's tempting to become
overenthusiastic with operator overloading. It's a fun toy, at first. But
remember it's only syntactic sugar, another way of calling a
function. Looking at it this way, you have no reason to overload an operator
except if it will make the code involving your class easier to write and
especially easier to read. (Remember, code is read much more than it is
written.) If this isn't the case, don't bother.
Another common response to operator
overloading is panic; suddenly, C operators have no familiar meaning anymore.
“Everything's changed and all my C code will do different
things!” This isn't true. All the operators used in expressions that
contain only built-in data types cannot be changed. You can never overload
operators such that
1 << 4;

behaves differently, or
1.414 << 2;

has meaning. Only an expression
containing a user-defined type can have an overloaded
operator.
12-2 - 
Syntax
Defining an overloaded
operator is like defining a function, but the name of
that function is operator@, in which @ represents the operator
that's being overloaded. The number of arguments in the overloaded
operator's argument list depends on two
factors:
		Whether it's a unary
operator (one argument) or a binary operator (two
arguments).
		Whether
the operator is defined as a global function (one argument for unary, two for
binary) or a member function (zero arguments for unary, one for binary -
the object becomes the left-hand
argument).

Here's a
small class that shows the syntax for operator overloading:
//: C12:OperatorOverloadingSyntax.cpp
#include <iostream>
using namespace std;
 
class Integer {
  int i;
public:
  Integer(int ii) : i(ii) {}
  const Integer
  operator+(const Integer& rv) const {
    cout << "operator+" << endl;
    return Integer(i + rv.i);
  }
  Integer&
  operator+=(const Integer& rv) {
    cout << "operator+=" << endl;
    i += rv.i;
    return *this;
  }
};
 
int main() {
  cout << "built-in types:" << endl;
  int i = 1, j = 2, k = 3;
  k += i + j;
  cout << "user-defined types:" << endl;
  Integer ii(1), jj(2), kk(3);
  kk += ii + jj;
} ///:~

The two overloaded operators are defined
as inline member functions that announce when they are called. The single
argument is what appears on the right-hand side of the operator for binary
operators. Unary operators have no arguments when defined as member functions.
The member function is called for the object on the left-hand side of the
operator.
For non-conditional operators
(conditionals usually return a Boolean value), you'll almost always want
to return an object or reference
of the same type you're operating on if the two arguments are the same
type. (If they're not the same type, the interpretation of what it should
produce is up to you.) This way,
complicated
expressions can be built up:
kk += ii + jj;

The operator+ produces a new
Integer (a temporary) that is used as the rv argument for the
operator+=. This temporary is destroyed as soon as it is no longer
needed.
12-3 - 
Overloadable operators
Although you can overload
almost all the operators
available in C, the use of operator overloading is fairly restrictive. In
particular, you cannot combine operators that currently have no meaning in C
(such as ** to represent exponentiation), you cannot change the
evaluation precedence of operators, and you cannot change the number of
arguments required by an operator. This makes sense - all of these actions
would produce operators that confuse meaning rather than clarify
it.
The next two subsections give examples of
all the “regular” operators, overloaded in the form that
you'll most likely
use.
12-3-1 - 
Unary operators
The following example shows the syntax to
overload all the unary
operators, in the form of both
global functions (non-member friend functions) and as member functions.
These will expand upon the Integer class shown previously and add a new
byte class. The meaning of your particular operators will depend on the
way you want to use them, but consider the client programmer before doing
something unexpected.
Here is a catalog of all the unary
functions:
//: C12:OverloadingUnaryOperators.cpp
#include <iostream>
using namespace std;
 
// Non-member functions:
class Integer {
  long i;
  Integer* This() { return this; }
public:
  Integer(long ll = 0) : i(ll) {}
  // No side effects takes const& argument:
  friend const Integer&
    operator+(const Integer& a);
  friend const Integer
    operator-(const Integer& a);
  friend const Integer
    operator~(const Integer& a);
  friend Integer*
    operator&(Integer& a);
  friend int
    operator!(const Integer& a);
  // Side effects have non-const& argument:
  // Prefix:
  friend const Integer&
    operator++(Integer& a);
  // Postfix:
  friend const Integer
    operator++(Integer& a, int);
  // Prefix:
  friend const Integer&
    operator--(Integer& a);
  // Postfix:
  friend const Integer
    operator--(Integer& a, int);
};
 
// Global operators:
const Integer& operator+(const Integer& a) {
  cout << "+Integer\n";
  return a; // Unary + has no effect
}
const Integer operator-(const Integer& a) {
  cout << "-Integer\n";
  return Integer(-a.i);
}
const Integer operator~(const Integer& a) {
  cout << "~Integer\n";
  return Integer(~a.i);
}
Integer* operator&(Integer& a) {
  cout << "&Integer\n";
  return a.This(); // &a is recursive!
}
int operator!(const Integer& a) {
  cout << "!Integer\n";
  return !a.i;
}
// Prefix; return incremented value
const Integer& operator++(Integer& a) {
  cout << "++Integer\n";
  a.i++;
  return a;
}
// Postfix; return the value before increment:
const Integer operator++(Integer& a, int) {
  cout << "Integer++\n";
  Integer before(a.i);
  a.i++;
  return before;
}
// Prefix; return decremented value
const Integer& operator--(Integer& a) {
  cout << "--Integer\n";
  a.i--;
  return a;
}
// Postfix; return the value before decrement:
const Integer operator--(Integer& a, int) {
  cout << "Integer--\n";
  Integer before(a.i);
  a.i--;
  return before;
}
 
// Show that the overloaded operators work:
void f(Integer a) {
  +a;
  -a;
  ~a;
  Integer* ip = &a;
  !a;
  ++a;
  a++;
  --a;
  a--;
}
 
// Member functions (implicit "this"):
class Byte {
  unsigned char b;
public:
  Byte(unsigned char bb = 0) : b(bb) {}
  // No side effects: const member function:
  const Byte& operator+() const {
    cout << "+Byte\n";
    return *this;
  }
  const Byte operator-() const {
    cout << "-Byte\n";
    return Byte(-b);
  }
  const Byte operator~() const {
    cout << "~Byte\n";
    return Byte(~b);
  }
  Byte operator!() const {
    cout << "!Byte\n";
    return Byte(!b);
  }
  Byte* operator&() {
    cout << "&Byte\n";
    return this;
  }
  // Side effects: non-const member function:
  const Byte& operator++() { // Prefix
    cout << "++Byte\n";
    b++;
    return *this;
  }
  const Byte operator++(int) { // Postfix
    cout << "Byte++\n";
    Byte before(b);
    b++;
    return before;
  }
  const Byte& operator--() { // Prefix
    cout << "--Byte\n";
    --b;
    return *this;
  }
  const Byte operator--(int) { // Postfix
    cout << "Byte--\n";
    Byte before(b);
    --b;
    return before;
  }
};
 
void g(Byte b) {
  +b;
  -b;
  ~b;
  Byte* bp = &b;
  !b;
  ++b;
  b++;
  --b;
  b--;
}
 
int main() {
  Integer a;
  f(a);
  Byte b;
  g(b);
} ///:~

The functions are grouped according to
the way their arguments are passed. Guidelines for how to pass and return
arguments are given later. The forms above (and the ones that follow in the next
section) are typically what you'll use, so start with them as a pattern
when overloading your own operators.

Increment &
decrement
The overloaded ++ and -
- operators present a dilemma because you want to be able to call
different functions depending on whether they appear before (prefix) or after
(postfix) the object they're acting upon. The solution is simple, but
people sometimes find it a bit confusing at first. When the compiler sees, for
example, ++a (a pre-increment), it generates a call to
operator++(a); but when
it sees a++, it generates a call to operator++(a, int). That is,
the compiler differentiates between the two forms by making calls to different
overloaded functions. In OverloadingUnaryOperators.cpp for the member
function versions, if the compiler sees ++b, it generates a call to
B::operator++( ); if it sees b++ it calls
B::operator++(int).
All the user sees is that a different
function gets called for the prefix
and
postfix versions. Underneath, however, the two functions calls have different
signatures, so they link to two different function bodies. The compiler passes a
dummy constant value for the int argument (which is never given an
identifier because the value is never used) to generate the different signature
for the postfix
version.
12-3-2 - 
Binary operators
The following listing repeats the example
of OverloadingUnaryOperators.cpp for binary operators so you have an
example of all the operators you might want to overload. Again, both global
versions and member function versions are shown.
//: C12:Integer.h
// Non-member overloaded operators
#ifndef INTEGER_H
#define INTEGER_H
#include <iostream>
 
// Non-member functions:
class Integer { 
  long i;
public:
  Integer(long ll = 0) : i(ll) {}
  // Operators that create new, modified value:
  friend const Integer
    operator+(const Integer& left,
              const Integer& right);
  friend const Integer
    operator-(const Integer& left,
              const Integer& right);
  friend const Integer
    operator*(const Integer& left,
              const Integer& right);
  friend const Integer
    operator/(const Integer& left,
              const Integer& right);
  friend const Integer
    operator%(const Integer& left,
              const Integer& right);
  friend const Integer
    operator^(const Integer& left,
              const Integer& right);
  friend const Integer
    operator&(const Integer& left,
              const Integer& right);
  friend const Integer
    operator|(const Integer& left,
              const Integer& right);
  friend const Integer
    operator<<(const Integer& left,
               const Integer& right);
  friend const Integer
    operator>>(const Integer& left,
               const Integer& right);
  // Assignments modify & return lvalue:
  friend Integer&
    operator+=(Integer& left,
               const Integer& right);
  friend Integer&
    operator-=(Integer& left,
               const Integer& right);
  friend Integer&
    operator*=(Integer& left,
               const Integer& right);
  friend Integer&
    operator/=(Integer& left,
               const Integer& right);
  friend Integer&
    operator%=(Integer& left,
               const Integer& right);
  friend Integer&
    operator^=(Integer& left,
               const Integer& right);
  friend Integer&
    operator&=(Integer& left,
               const Integer& right);
  friend Integer&
    operator|=(Integer& left,
               const Integer& right);
  friend Integer&
    operator>>=(Integer& left,
                const Integer& right);
  friend Integer&
    operator<<=(Integer& left,
                const Integer& right);
  // Conditional operators return true/false:
  friend int
    operator==(const Integer& left,
               const Integer& right);
  friend int
    operator!=(const Integer& left,
               const Integer& right);
  friend int
    operator<(const Integer& left,
              const Integer& right);
  friend int
    operator>(const Integer& left,
              const Integer& right);
  friend int
    operator<=(const Integer& left,
               const Integer& right);
  friend int
    operator>=(const Integer& left,
               const Integer& right);
  friend int
    operator&&(const Integer& left,
               const Integer& right);
  friend int
    operator||(const Integer& left,
               const Integer& right);
  // Write the contents to an ostream:
  void print(std::ostream& os) const { os << i; }
}; 
#endif // INTEGER_H ///:~

//: C12:Integer.cpp {O}
// Implementation of overloaded operators
#include "Integer.h"
#include "../require.h"
 
const Integer
  operator+(const Integer& left,
            const Integer& right) {
  return Integer(left.i + right.i);
}
const Integer
  operator-(const Integer& left,
            const Integer& right) {
  return Integer(left.i - right.i);
}
const Integer
  operator*(const Integer& left,
            const Integer& right) {
  return Integer(left.i * right.i);
}
const Integer
  operator/(const Integer& left,
            const Integer& right) {
  require(right.i != 0, "divide by zero");
  return Integer(left.i / right.i);
}
const Integer
  operator%(const Integer& left,
            const Integer& right) {
  require(right.i != 0, "modulo by zero");
  return Integer(left.i % right.i);
}
const Integer
  operator^(const Integer& left,
            const Integer& right) {
  return Integer(left.i ^ right.i);
}
const Integer
  operator&(const Integer& left,
            const Integer& right) {
  return Integer(left.i & right.i);
}
const Integer
  operator|(const Integer& left,
            const Integer& right) {
  return Integer(left.i | right.i);
}
const Integer
  operator<<(const Integer& left,
             const Integer& right) {
  return Integer(left.i << right.i);
}
const Integer
  operator>>(const Integer& left,
             const Integer& right) {
  return Integer(left.i >> right.i);
}
// Assignments modify & return lvalue:
Integer& operator+=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i += right.i;
   return left;
}
Integer& operator-=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i -= right.i;
   return left;
}
Integer& operator*=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i *= right.i;
   return left;
}
Integer& operator/=(Integer& left,
                    const Integer& right) {
   require(right.i != 0, "divide by zero");
   if(&left == &right) {/* self-assignment */}
   left.i /= right.i;
   return left;
}
Integer& operator%=(Integer& left,
                    const Integer& right) {
   require(right.i != 0, "modulo by zero");
   if(&left == &right) {/* self-assignment */}
   left.i %= right.i;
   return left;
}
Integer& operator^=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i ^= right.i;
   return left;
}
Integer& operator&=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i &= right.i;
   return left;
}
Integer& operator|=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i |= right.i;
   return left;
}
Integer& operator>>=(Integer& left,
                     const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i >>= right.i;
   return left;
}
Integer& operator<<=(Integer& left,
                     const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i <<= right.i;
   return left;
}
// Conditional operators return true/false:
int operator==(const Integer& left,
               const Integer& right) {
    return left.i == right.i;
}
int operator!=(const Integer& left,
               const Integer& right) {
    return left.i != right.i;
}
int operator<(const Integer& left,
              const Integer& right) {
    return left.i < right.i;
}
int operator>(const Integer& left,
              const Integer& right) {
    return left.i > right.i;
}
int operator<=(const Integer& left,
               const Integer& right) {
    return left.i <= right.i;
}
int operator>=(const Integer& left,
               const Integer& right) {
    return left.i >= right.i;
}
int operator&&(const Integer& left,
               const Integer& right) {
    return left.i && right.i;
}
int operator||(const Integer& left,
               const Integer& right) {
    return left.i || right.i;
} ///:~

//: C12:IntegerTest.cpp
//{L} Integer
#include "Integer.h"
#include <fstream>
using namespace std;
ofstream out("IntegerTest.out");
 
void h(Integer& c1, Integer& c2) {
  // A complex expression:
  c1 += c1 * c2 + c2 % c1;
  #define TRY(OP) \
    out << "c1 = "; c1.print(out); \
    out << ", c2 = "; c2.print(out); \
    out << ";  c1 " #OP " c2 produces "; \
    (c1 OP c2).print(out); \
    out << endl;
  TRY(+) TRY(-) TRY(*) TRY(/)
  TRY(%) TRY(^) TRY(&) TRY(|)
  TRY(<<) TRY(>>) TRY(+=) TRY(-=)
  TRY(*=) TRY(/=) TRY(%=) TRY(^=)
  TRY(&=) TRY(|=) TRY(>>=) TRY(<<=)
  // Conditionals:
  #define TRYC(OP) \
    out << "c1 = "; c1.print(out); \
    out << ", c2 = "; c2.print(out); \
    out << ";  c1 " #OP " c2 produces "; \
    out << (c1 OP c2); \
    out << endl;
  TRYC(<) TRYC(>) TRYC(==) TRYC(!=) TRYC(<=)
  TRYC(>=) TRYC(&&) TRYC(||)
} 
 
int main() {
  cout << "friend functions" << endl;
  Integer c1(47), c2(9);
  h(c1, c2);
} ///:~

//: C12:Byte.h
// Member overloaded operators
#ifndef BYTE_H
#define BYTE_H
#include "../require.h"
#include <iostream>
// Member functions (implicit "this"):
class Byte { 
  unsigned char b;
public:
  Byte(unsigned char bb = 0) : b(bb) {}
  // No side effects: const member function:
  const Byte
    operator+(const Byte& right) const {
    return Byte(b + right.b);
  }
  const Byte
    operator-(const Byte& right) const {
    return Byte(b - right.b);
  }
  const Byte
    operator*(const Byte& right) const {
    return Byte(b * right.b);
  }
  const Byte
    operator/(const Byte& right) const {
    require(right.b != 0, "divide by zero");
    return Byte(b / right.b);
  }
  const Byte
    operator%(const Byte& right) const {
    require(right.b != 0, "modulo by zero");
    return Byte(b % right.b);
  }
  const Byte
    operator^(const Byte& right) const {
    return Byte(b ^ right.b);
  }
  const Byte
    operator&(const Byte& right) const {
    return Byte(b & right.b);
  }
  const Byte
    operator|(const Byte& right) const {
    return Byte(b | right.b);
  }
  const Byte
    operator<<(const Byte& right) const {
    return Byte(b << right.b);
  }
  const Byte
    operator>>(const Byte& right) const {
    return Byte(b >> right.b);
  }
  // Assignments modify & return lvalue.
  // operator= can only be a member function:
  Byte& operator=(const Byte& right) {
    // Handle self-assignment:
    if(this == &right) return *this;
    b = right.b;
    return *this;
  }
  Byte& operator+=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b += right.b;
    return *this;
  }
  Byte& operator-=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b -= right.b;
    return *this;
  }
  Byte& operator*=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b *= right.b;
    return *this;
  }
  Byte& operator/=(const Byte& right) {
    require(right.b != 0, "divide by zero");
    if(this == &right) {/* self-assignment */}
    b /= right.b;
    return *this;
  }
  Byte& operator%=(const Byte& right) {
    require(right.b != 0, "modulo by zero");
    if(this == &right) {/* self-assignment */}
    b %= right.b;
    return *this;
  }
  Byte& operator^=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b ^= right.b;
    return *this;
  }
  Byte& operator&=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b &= right.b;
    return *this;
  }
  Byte& operator|=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b |= right.b;
    return *this;
  }
  Byte& operator>>=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b >>= right.b;
    return *this;
  }
  Byte& operator<<=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b <<= right.b;
    return *this;
  }
  // Conditional operators return true/false:
  int operator==(const Byte& right) const {
      return b == right.b;
  }
  int operator!=(const Byte& right) const {
      return b != right.b;
  }
  int operator<(const Byte& right) const {
      return b < right.b;
  }
  int operator>(const Byte& right) const {
      return b > right.b;
  }
  int operator<=(const Byte& right) const {
      return b <= right.b;
  }
  int operator>=(const Byte& right) const {
      return b >= right.b;
  }
  int operator&&(const Byte& right) const {
      return b && right.b;
  }
  int operator||(const Byte& right) const {
      return b || right.b;
  }
  // Write the contents to an ostream:
  void print(std::ostream& os) const {
    os << "0x" << std::hex << int(b) << std::dec;
  }
}; 
#endif // BYTE_H ///:~

//: C12:ByteTest.cpp
#include "Byte.h"
#include <fstream>
using namespace std;
ofstream out("ByteTest.out");
 
void k(Byte& b1, Byte& b2) {
  b1 = b1 * b2 + b2 % b1;
 
  #define TRY2(OP) \
    out << "b1 = "; b1.print(out); \
    out << ", b2 = "; b2.print(out); \
    out << ";  b1 " #OP " b2 produces "; \
    (b1 OP b2).print(out); \
    out << endl;
 
  b1 = 9; b2 = 47;
  TRY2(+) TRY2(-) TRY2(*) TRY2(/)
  TRY2(%) TRY2(^) TRY2(&) TRY2(|)
  TRY2(<<) TRY2(>>) TRY2(+=) TRY2(-=)
  TRY2(*=) TRY2(/=) TRY2(%=) TRY2(^=)
  TRY2(&=) TRY2(|=) TRY2(>>=) TRY2(<<=)
  TRY2(=) // Assignment operator
 
  // Conditionals:
  #define TRYC2(OP) \
    out << "b1 = "; b1.print(out); \
    out << ", b2 = "; b2.print(out); \
    out << ";  b1 " #OP " b2 produces "; \
    out << (b1 OP b2); \
    out << endl;
 
  b1 = 9; b2 = 47;
  TRYC2(<) TRYC2(>) TRYC2(==) TRYC2(!=) TRYC2(<=)
  TRYC2(>=) TRYC2(&&) TRYC2(||)
 
  // Chained assignment:
  Byte b3 = 92;
  b1 = b2 = b3;
}
 
int main() {
  out << "member functions:" << endl;
  Byte b1(47), b2(9);
  k(b1, b2);
} ///:~

You can see that operator= is only
allowed to be a member function. This is explained later.
Notice that all of the assignment
operators have code to check for
self-assignment;
this is a general guideline. In some cases this is not necessary; for example,
with operator+= you often want to say A+=A and have it add
A to itself. The most important place to check for self-assignment is
operator= because with
complicated objects disastrous results may occur. (In some cases it's OK,
but you should always keep it in mind when writing
operator=.)
All of the operators shown in the
previous two examples are overloaded to handle a single type. It's also
possible to overload operators to handle mixed types, so you can add apples to
oranges, for example. Before you start on an exhaustive overloading of
operators, however, you should look at the section on automatic type conversion
later in this chapter. Often, a type conversion in the right place can save you
a lot of overloaded
operators.
12-3-3 - 
Arguments & return
values
It may seem a little confusing at first
when you look at OverloadingUnaryOperators.cpp, Integer.h and
Byte.h and see all the different ways that arguments are passed and
returned. Although you can pass and return arguments any way you want to,
the choices in these examples were not selected at random. They follow a logical
pattern, the same one you'll want to use in most of your
choices.
		As with any function
argument, if you only need to read from the argument and not change it, default
to passing it as a const reference. Ordinary arithmetic operations (like
+ and -, etc.) and Booleans will not change their arguments,
so pass by const reference is predominantly what you'll use. When
the function is a class member, this translates to making it a const
member function. Only with the operator-assignments (like +=) and the
operator=, which change the left-hand argument, is the left argument
not a constant, but it's still passed in as an address because it
will be changed.
		The
type of return value you should select depends on the expected meaning of the
operator. (Again, you can do anything you want with the arguments and return
values.) If the effect of the operator is to produce a new value, you will need
to generate a new object as the return value. For example,
Integer::operator+ must produce an Integer object that is the sum
of the operands. This object is returned by value as a const, so the
result cannot be modified as an
lvalue.
		All the
assignment operators modify the lvalue. To allow the result of the assignment to
be used in chained expressions, like a=b=c, it's expected that you
will return a reference to that same lvalue that was just modified. But should
this reference be a const or nonconst? Although you read
a=b=c from left to right, the compiler parses it from right to left, so
you're not forced to return a nonconst to support assignment
chaining. However, people do sometimes expect to be able to perform an operation
on the thing that was just assigned to, such as (a=b).func( ); to
call func( ) on a after assigning b to it. Thus, the
return value for all of the assignment operators should be a nonconst
reference to the
lvalue.
		For the
logical operators, everyone expects to get at worst an int back, and at
best a bool. (Libraries developed before most compilers supported
C++'s built-in bool will use int or an equivalent
typedef.)

The increment
and decrement operators
present
a dilemma because of the pre- and postfix versions. Both versions change the
object and so cannot treat the object as a const. The prefix version
returns the value of the object after it was changed, so you expect to get back
the object that was changed. Thus, with prefix you can just return *this
as a reference. The postfix version is supposed to return the value
before the value is changed, so you're forced to create a separate
object to represent that value and return it. So with postfix you must return by
value if you want to preserve the expected meaning. (Note that you'll
sometimes find the increment and decrement operators returning an int or
bool to indicate, for example, whether an object designed to move through
a list is at the end of that list.) Now the question is: Should these be
returned as const or nonconst? If you allow the object to be
modified and someone writes (++a).func( ), func( ) will
be operating on a itself, but with (a++).func( ),
func( ) operates on the temporary object returned by the postfix
operator++. Temporary objects are automatically const, so this
would be flagged by the compiler, but for consistency's sake it may make
more sense to make them both const, as was done here. Or you may choose
to make the prefix version non-const and the postfix const.Because of the variety of meanings you may want to give the increment and
decrement operators, they will need to be considered on a case-by-case
basis.

Return by value as
const
Returning by value as a const can
seem a bit subtle at first, so it deserves a bit more explanation. Consider the
binary operator+. If you use it in an expression such as f(a+b),
the result of a+b becomes a temporary object that is used in the call to
f( ). Because it's a temporary, it's automatically
const, so whether you explicitly make the return value const or
not has no effect.
However, it's also possible for you
to send a message to the return value of a+b, rather than just passing it
to a function. For example, you can say (a+b).g( ), in which
g( ) is some member function of Integer, in this case. By
making the return value const, you state that only a const member
function can be called for that return value. This is const-correct,
because it prevents you from storing potentially valuable information in an
object that will most likely be lost.

The return
optimization
When new objects are created to return by
value, notice the form used. In operator+, for example:
return Integer(left.i + right.i);

This may look at first like a
“function call to a constructor,” but it's not. The syntax is
that of a temporary object; the statement says “make a temporary
Integer object and return it.” Because of this, you might think
that the result is the same as creating a named local object and returning that.
However, it's quite different. If you were to say
instead:
Integer tmp(left.i + right.i);
return tmp;

three things will happen. First, the
tmp object is created including its constructor call. Second, the
copy-constructor copies the tmp to the location
of the outside return value. Third, the destructor is called for tmp at
the end of the scope.
In contrast, the “returning a
temporary” approach works quite differently. When
the compiler sees you do this, it knows that you have no other need for the
object it's creating than to return it. The compiler takes advantage of
this by building the object directly into the location of the outside
return value. This requires only a single ordinary constructor call (no
copy-constructor is necessary) and there's no destructor call because you
never actually create a local object. Thus, while it doesn't cost anything
but programmer awareness, it's significantly more efficient. This is often
called the return value
optimization.
12-3-4 - 
Unusual operators
Several additional operators have a
slightly different syntax for overloading.
The subscript, operator[
], must be a member function and it requires a
single argument. Because operator[ ] implies that the object it's
being called for acts like an array, you will often return a reference from this
operator, so it can be conveniently used on the left-hand side of an equal sign.
This operator is commonly overloaded; you'll see examples in the rest of
the book.
The operators new and
delete control dynamic storage allocation and can be overloaded in a
number of different ways. This topic is covered in the Chapter
13.

Operator comma
The comma
operator is called when it
appears next to an object of the type the comma is defined for. However,
“operator,”is not called for function argument
lists, only for objects that are out in the open, separated by commas. There
doesn't seem to be a lot of practical uses for this operator; it's
in the language for consistency. Here's an example showing how the comma
function can be called when the comma appears before an object, as well
as after:
//: C12:OverloadingOperatorComma.cpp
#include <iostream>
using namespace std;
 
class After {
public:
  const After& operator,(const After&) const {
    cout << "After::operator,()" << endl;
    return *this;
  }
};
 
class Before {};
 
Before& operator,(int, Before& b) {
  cout << "Before::operator,()" << endl;
  return b;
}
 
int main() {
  After a, b;
  a, b;  // Operator comma called
 
  Before c;
  1, c;  // Operator comma called
} ///:~

The global function allows the comma to
be placed before the object in question. The usage shown is fairly obscure and
questionable. Although you would probably use a comma-separated list as part of
a more complex expression, it's too subtle to use in most
situations.

Operator->
The
operator->
is generally used when you want to make an object appear to be a pointer. Since
such an object has more “smarts” built into it than exist for a
typical pointer, an object like this is often called a smart pointer.
These are especially useful if you want to “wrap” a class around a
pointer to make that pointer safe, or in the common usage of an
iterator, which is an object that moves through a
collection /container
of other objects and selects them one at a time,
without providing direct access to the implementation of the container.
(You'll often find containers and iterators in class libraries, such as in
the Standard C++ Library, described in Volume 2 of this book.)
A pointer dereference operator must be a
member function. It has additional, atypical constraints: It must return an
object (or reference to an object) that also has a pointer dereference operator,
or it must return a pointer that can be used to select what the pointer
dereference operator arrow is pointing at. Here's a simple
example:
//: C12:SmartPointer.cpp
#include <iostream>
#include <vector>
#include "../require.h"
using namespace std;
 
class Obj {
  static int i, j;
public:
  void f() const { cout << i++ << endl; }
  void g() const { cout << j++ << endl; }
};
 
// Static member definitions:
int Obj::i = 47;
int Obj::j = 11;
 
// Container:
class ObjContainer {
  vector<Obj*> a;
public:
  void add(Obj* obj) { a.push_back(obj); }
  friend class SmartPointer;
};
 
class SmartPointer {
  ObjContainer& oc;
  int index;
public:
  SmartPointer(ObjContainer& objc) : oc(objc) {
    index = 0;
  }
  // Return value indicates end of list:
  bool operator++() { // Prefix
    if(index >= oc.a.size()) return false;
    if(oc.a[++index] == 0) return false;
    return true;
  }
  bool operator++(int) { // Postfix
    return operator++(); // Use prefix version
  }
  Obj* operator->() const {
    require(oc.a[index] != 0, "Zero value "
      "returned by SmartPointer::operator->()");
    return oc.a[index];
  }
};
 
int main() {
  const int sz = 10;
  Obj o[sz];
  ObjContainer oc;
  for(int i = 0; i < sz; i++)
    oc.add(&o[i]); // Fill it up
  SmartPointer sp(oc); // Create an iterator
  do {
    sp->f(); // Pointer dereference operator call
    sp->g();
  } while(sp++);
} ///:~

The class Obj defines the objects
that are manipulated in this program. The functions f( ) and
g( ) simply print out interesting values using static data
members. Pointers to these objects are stored inside containers of type
ObjContainer using its add( ) function. ObjContainer
looks like an array of pointers, but you'll notice there's no way to
get the pointers back out again. However, SmartPointer is declared as a
friend class, so it has permission to look inside the container. The
SmartPointer class looks very much like an intelligent pointer -
you can move it forward using operator++ (you can also define an
operator- -), it won't go past the end of the container
it's pointing to, and it produces (via the pointer dereference operator)
the value it's pointing to. Notice that the SmartPointer is a
custom fit for the container it's created for; unlike an ordinary pointer,
there isn't a “general purpose” smart pointer. You will learn
more about the smart pointers called “iterators” in the last chapter
of this book and in Volume 2 (downloadable from
www.BruceEckel.com).
In main( ), once the
container oc is filled with Obj objects, a SmartPointer sp
is created. The smart pointer calls happen in the expressions:
sp->f(); // Smart pointer calls
sp->g();

Here, even though sp doesn't
actually have f( ) and g( ) member functions, the
pointer dereference operator automatically calls those functions for the
Obj* that is returned by SmartPointer::operator->. The
compiler performs all the checking to make sure the function call works
properly.
Although the underlying mechanics of the
pointer dereference operator are more complex than the other operators, the goal
is exactly the same: to provide a more convenient syntax for the users of your
classes.

A nested
iterator
It's more common to see a
“smart pointer” or “iterator” class nested within the
class that it services. The previous example can be rewritten to nest
SmartPointer inside ObjContainer like this:
//: C12:NestedSmartPointer.cpp
#include <iostream>
#include <vector>
#include "../require.h"
using namespace std;
 
class Obj {
  static int i, j;
public:
  void f() { cout << i++ << endl; }
  void g() { cout << j++ << endl; }
};
 
// Static member definitions:
int Obj::i = 47;
int Obj::j = 11;
 
// Container:
class ObjContainer {
  vector<Obj*> a;
public:
  void add(Obj* obj) { a.push_back(obj); }
  class SmartPointer;
  friend class SmartPointer;
  class SmartPointer {
    ObjContainer& oc;
    unsigned int index;
  public:
    SmartPointer(ObjContainer& objc) : oc(objc) {
      index = 0;
    }
    // Return value indicates end of list:
    bool operator++() { // Prefix
      if(index >= oc.a.size()) return false;
      if(oc.a[++index] == 0) return false;
      return true;
    }
    bool operator++(int) { // Postfix
      return operator++(); // Use prefix version
    }
    Obj* operator->() const {
      require(oc.a[index] != 0, "Zero value "
        "returned by SmartPointer::operator->()");
      return oc.a[index];
    }
  };
  // Function to produce a smart pointer that 
  // points to the beginning of the ObjContainer:
  SmartPointer begin() { 
    return SmartPointer(*this);
  }
};
 
int main() {
  const int sz = 10;
  Obj o[sz];
  ObjContainer oc;
  for(int i = 0; i < sz; i++)
    oc.add(&o[i]); // Fill it up
  ObjContainer::SmartPointer sp = oc.begin();
  do {
    sp->f(); // Pointer dereference operator call
    sp->g();
  } while(++sp);
} ///:~

Besides the actual nesting of the class,
there are only two differences here. The first is in the
declaration
of the class so that it can be a friend:
class SmartPointer;
friend SmartPointer;

The compiler must first know that the
class exists before it can be told that it's a
friend.
The second difference is in the
ObjContainer member function begin( ), which produces a
SmartPointer that points to the beginning of the ObjContainer
sequence. Although it's really only a convenience, it's valuable
because it follows part of the form used in the Standard  C++
Library.

Operator->*
The operator->*
is a binary operator that
behaves like all the other binary operators. It is provided for those situations
when you want to mimic the behavior provided by the built-in
pointer-to-member syntax, described in the
previous chapter.
Just like operator->, the
pointer-to-member dereference operator is generally used with some kind of
object that represents a “smart pointer,” although the example shown
here will be simpler so it's understandable. The trick when defining
operator->* is that it must return an object for which the
operator( ) can be called with the arguments for the member function
you're calling.
The function calloperator( )

must be a member function, and it is unique in that it allows any number of
arguments. It makes your object look like it's actually a function.
Although you could define several overloaded operator( ) functions
with different arguments, it's often used for types that only have a
single operation, or at least an especially prominent one. You'll see in
Volume 2 that the Standard C++ Library uses the function call operator in order
to create “function objects.”

To create an operator->* you
must first create a class with an operator( ) that is the type of
object that operator->* will return. This class must somehow capture
the necessary information so that when the operator( ) is called
(which happens automatically), the pointer-to-member will be dereferenced for
the object. In the following example,  the FunctionObject constructor
captures and stores both the pointer to the object and the pointer to the member
function, and then the operator( ) uses those to make the actual
pointer-to-member call:
//: C12:PointerToMemberOperator.cpp
#include <iostream>
using namespace std;
 
class Dog {
public:
  int run(int i) const { 
    cout << "run\n";  
    return i; 
  }
  int eat(int i) const { 
     cout << "eat\n";  
     return i; 
  }
  int sleep(int i) const { 
    cout << "ZZZ\n"; 
    return i; 
  }
  typedef int (Dog::*PMF)(int) const;
  // operator->* must return an object 
  // that has an operator():
  class FunctionObject {
    Dog* ptr;
    PMF pmem;
  public:
    // Save the object pointer and member pointer
    FunctionObject(Dog* wp, PMF pmf) 
      : ptr(wp), pmem(pmf) { 
      cout << "FunctionObject constructor\n";
    }
    // Make the call using the object pointer
    // and member pointer
    int operator()(int i) const {
      cout << "FunctionObject::operator()\n";
      return (ptr->*pmem)(i); // Make the call
    }
  };
  FunctionObject operator->*(PMF pmf) { 
    cout << "operator->*" << endl;
    return FunctionObject(this, pmf);
  }
};
 
int main() {
  Dog w;
  Dog::PMF pmf = &Dog::run;
  cout << (w->*pmf)(1) << endl;
  pmf = &Dog::sleep;
  cout << (w->*pmf)(2) << endl;
  pmf = &Dog::eat;
  cout << (w->*pmf)(3) << endl;
} ///:~

Dog has three member functions,
all of which take an int argument and return an int. PMF is
a typedef to simplify defining a pointer-to-member to Dog's
member functions.
A FunctionObject is created and
returned by operator->*. Notice that operator->* knows both
the object that the pointer-to-member is being called for (this) and the
pointer-to-member, and it passes those to the FunctionObject constructor
that stores the values. When operator->* is called, the compiler
immediately turns around and calls operator( ) for the return value
of operator->*, passing in the arguments that were given to
operator->*. The FunctionObject::operator( ) takes the
arguments and then dereferences the “real” pointer-to-member using
its stored object pointer and pointer-to-member.
Notice that what you are doing here, just
as with operator->, is inserting yourself in the middle of the call to
operator->*. This allows you to perform some extra operations if you
need to.
The operator->* mechanism
implemented here only works for member functions that take an int
argument and return an int. This is limiting, but if you try to
create overloaded mechanisms for each different possibility, it seems like a
prohibitive task. Fortunately, C++'s template mechanism (described
in the last chapter of this book, and in Volume 2) is designed to handle just
such a
problem.
12-3-5 - 
Operators you can't
overload
There are certain operators in the
available set that cannot be overloaded. The general reason for the restriction
is safety. If these operators were overloadable, it would somehow jeopardize or
break safety mechanisms, make things harder, or confuse existing
practice.
		The member selection
operator.. Currently, the dot has a meaning for any member in a class,
but if you allow it to be overloaded, then you couldn't access members in
the normal way; instead you'd have to use a pointer and the arrow
operator->.
		The
pointer to member dereference operator.*, for the same reason as
operator..
		There's
no exponentiation operator. The
most popular choice for this was operator** from Fortran, but this raised
difficult parsing questions. Also, C has no exponentiation operator, so C++
didn't seem to need one either because you can always perform a function
call. An exponentiation operator would add a convenient notation, but no new
language functionality to account for the added complexity of the
compiler.
		There are
no user-defined operators. That is, you can't make
up new operators that aren't currently in the set. Part of the problem is
how to determine precedence, and part of the problem is an insufficient need to
account for the necessary
trouble.
		You
can't change the precedence rules. They're hard enough to remember
as it is without letting people play with
them.

12-4 - 
Non-member operators
In some of the previous examples, the
operators may be members or non-members, and it doesn't seem to make much
difference. This usually raises the question, “Which should I
choose?” In general, if it doesn't make any difference, they should
be members, to emphasize the association between the operator and its class.
When the left-hand operand is always an object of the current class, this works
fine. 
However, sometimes you want the left-hand
operand to be an object of some other class. A common place you'll see
this is when the operators << and >> are overloaded
for
iostreams.
Since iostreams is a fundamental C++ library, you'll probably want to
overload these operators for most of your classes, so the process is worth
memorizing:
//: C12:IostreamOperatorOverloading.cpp
// Example of non-member overloaded operators
#include "../require.h"
#include <iostream>
#include <sstream> // "String streams"
#include <cstring>
using namespace std;
 
class IntArray {
  enum { sz = 5 };
  int i[sz];
public:
  IntArray() { memset(i, 0, sz* sizeof(*i)); }
  int& operator[](int x) {
    require(x >= 0 && x < sz,
      "IntArray::operator[] out of range");
    return i[x];
  }
  friend ostream&
    operator<<(ostream& os, const IntArray& ia);
  friend istream&
    operator>>(istream& is, IntArray& ia);
};
 
ostream& 
operator<<(ostream& os, const IntArray& ia) {
  for(int j = 0; j < ia.sz; j++) {
    os << ia.i[j];
    if(j != ia.sz -1)
      os << ", ";
  }
  os << endl;
  return os;
}
 
istream& operator>>(istream& is, IntArray& ia){
  for(int j = 0; j < ia.sz; j++)
    is >> ia.i[j];
  return is;
}
 
int main() {
  stringstream input("47 34 56 92 103");
  IntArray I;
  input >> I;
  I[4] = -1; // Use overloaded operator[]
  cout << I;
} ///:~

This class also contains an overloaded
operator
[ ], which returns a reference to a legitimate value in the array. Because a
reference is returned, the expression
I[4] = -1;

not only looks much more civilized than
if pointers were used, it also accomplishes the desired effect.
It's important that the overloaded
shift operators pass and return by reference, so the actions will affect
the external objects. In the function definitions, expressions
like
os << ia.i[j];

cause the existing overloaded
operator functions to be called (that is, those defined in
<iostream>). In this case, the function called is ostream&
operator<<(ostream&, int) because ia.i[j] resolves to an
int.
Once all the actions are performed on the
istream or
ostream, it is returned so it can be used in a
more complicated expression.
In main( ), a new type of
iostream is used: the stringstream
(declared in
<sstream>). This is
a class that takes a string (which it can create from a char
array, as shown here) and turns it into an iostream. In the example
above, this means that the shift operators can be tested without opening a file
or typing data in on the command line.
The form shown in this example for the
inserter and extractor is standard. If you want to create these operators for
your own class, copy the function signatures and return types above and follow
the form of the
body.
12-4-1 - 
Basic guidelines
Murray(49)
suggests these guidelines for choosing between members and
non-members:
	Operator	Recommended use
	All unary operators	member
	= ( ) [ ] ->
->*	must be member
	+=   -=   /=   *=   ^=  

&=   |=   %=   >>=  
<<=	member
	All other binary
operators	non-member


12-5 - 
Overloading assignment
A common source of confusion with new C++
programmers is assignment. This is no doubt because the = sign is such a
fundamental operation in programming, right down to copying a register at the
machine level. In addition, the
copy-constructor
(described in Chapter 11) is also sometimes invoked when the
= sign is
used:
MyType b;
MyType a = b;
a = b;

In the second line, the object a
is being defined. A new object is being created where one didn't
exist before. Because you know by now how defensive the C++ compiler is about
object initialization, you know that a constructor must always be called at the
point where an object is defined. But which constructor? a is being
created from an existing MyType object (b, on the right side of
the equal sign), so there's only one choice: the copy-constructor. Even
though an equal sign is involved, the copy-constructor is
called.
In the third line, things are different.
On the left side of the equal sign, there's a previously initialized
object. Clearly, you don't call a constructor for an object that's
already been created. In this case MyType::operator= is called for
a, taking as an argument whatever appears on the right-hand side. (You
can have multiple operator= functions to take different types of
right-hand arguments.)
This behavior is not restricted to the
copy-constructor. Any time you're initializing an
object using an = instead of the ordinary function-call form of the
constructor, the compiler will look for a constructor that accepts whatever is
on the right-hand side:
//: C12:CopyingVsInitialization.cpp
class Fi {
public:
  Fi() {}
};
 
class Fee {
public:
  Fee(int) {}
  Fee(const Fi&) {}
};
 
int main() {
  Fee fee = 1; // Fee(int)
  Fi fi;
  Fee fum = fi; // Fee(Fi)
} ///:~

When dealing with the = sign,
it's important to keep this distinction in mind: If the object
hasn't been created yet, initialization is required; otherwise the
assignment operator= is used.
It's even better to avoid writing
code that uses the = for initialization; instead, always use the explicit
constructor form. The two constructions with the equal sign then
become:
Fee fee(1);
Fee fum(fi);

This way, you'll avoid confusing
your
readers.
12-5-1 - 
Behavior of operator=
In Integer.h and Byte.h,
you saw that operator= can be only a member function. It is intimately
connected to the object on the left side of the ‘='. If it
was possible to define operator= globally, then you might attempt to
redefine the built-in ‘=' sign:
int operator=(int, MyType); // Global = not allowed!

The compiler skirts this whole issue by
forcing you to make operator= a member function.
When you create an operator=, you
must copy all of the necessary information from the right-hand object into the
current object (that is, the object that operator= is being called for)
to perform whatever you consider “assignment” for your class. For
simple objects, this is obvious:
//: C12:SimpleAssignment.cpp
// Simple operator=()
#include <iostream>
using namespace std;
 
class Value {
  int a, b;
  float c;
public:
  Value(int aa = 0, int bb = 0, float cc = 0.0)
    : a(aa), b(bb), c(cc) {}
  Value& operator=(const Value& rv) {
    a = rv.a;
    b = rv.b;
    c = rv.c;
    return *this;
  }
  friend ostream&
  operator<<(ostream& os, const Value& rv) {
    return os << "a = " << rv.a << ", b = "
      << rv.b << ", c = " << rv.c;
  }
};
 
int main() {
  Value a, b(1, 2, 3.3);
  cout << "a: " << a << endl;
  cout << "b: " << b << endl;
  a = b;
  cout << "a after assignment: " << a << endl;
} ///:~

Here, the object on the left side of the
= copies all the elements of the object on the right, then returns a
reference to itself, which allows a more complex expression to be
created.
This example includes a common mistake.
When you're assigning two objects of the same type, you should always
check first for self-assignment:
is the object being assigned to itself? In some cases, such as this one,
it's harmless if you perform the assignment operations anyway, but if
changes are made to the implementation of the class, it can make a difference,
and if you don't do it as a matter of habit, you may forget and cause
hard-to-find bugs.

Pointers in classes
What happens if the object is not so
simple? For example, what if the object contains pointers to other objects?
Simply copying a pointer means that you'll end up
with two objects pointing to the same storage location. In situations like
these, you need to do bookkeeping of your own.
There are two common approaches to this
problem. The simplest technique is to copy whatever the pointer refers to when
you do an assignment or a copy-construction. This is
straightforward:
//: C12:CopyingWithPointers.cpp
// Solving the pointer aliasing problem by
// duplicating what is pointed to during 
// assignment and copy-construction.
#include "../require.h"
#include <string>
#include <iostream>
using namespace std;
 
class Dog {
  string nm;
public:
  Dog(const string& name) : nm(name) {
    cout << "Creating Dog: " << *this << endl;
  }
  // Synthesized copy-constructor & operator= 
  // are correct.
  // Create a Dog from a Dog pointer:
  Dog(const Dog* dp, const string& msg) 
    : nm(dp->nm + msg) {
    cout << "Copied dog " << *this << " from "
         << *dp << endl;
  }
  ~Dog() { 
    cout << "Deleting Dog: " << *this << endl;
  }
  void rename(const string& newName) {
    nm = newName;
    cout << "Dog renamed to: " << *this << endl;
  }
  friend ostream&
  operator<<(ostream& os, const Dog& d) {
    return os << "[" << d.nm << "]";
  }
};
 
class DogHouse {
  Dog* p;
  string houseName;
public:
  DogHouse(Dog* dog, const string& house)
   : p(dog), houseName(house) {}
  DogHouse(const DogHouse& dh)
    : p(new Dog(dh.p, " copy-constructed")),
      houseName(dh.houseName 
        + " copy-constructed") {}
  DogHouse& operator=(const DogHouse& dh) {
    // Check for self-assignment:
    if(&dh != this) {
      p = new Dog(dh.p, " assigned");
      houseName = dh.houseName + " assigned";
    }
    return *this;
  }
  void renameHouse(const string& newName) {
    houseName = newName;
  }
  Dog* getDog() const { return p; }
  ~DogHouse() { delete p; }
  friend ostream&
  operator<<(ostream& os, const DogHouse& dh) {
    return os << "[" << dh.houseName 
      << "] contains " << *dh.p;
  }
}; 
 
int main() {
  DogHouse fidos(new Dog("Fido"), "FidoHouse");
  cout << fidos << endl;
  DogHouse fidos2 = fidos; // Copy construction
  cout << fidos2 << endl;
  fidos2.getDog()->rename("Spot");
  fidos2.renameHouse("SpotHouse");
  cout << fidos2 << endl;
  fidos = fidos2; // Assignment
  cout << fidos << endl;
  fidos.getDog()->rename("Max");
  fidos2.renameHouse("MaxHouse");
} ///:~

Dog is a simple class that
contains only a string that holds the name of the dog. However,
you'll generally know when something happens to a Dog because the
constructors and destructors print information when they are called. Notice that
the second constructor is a bit like a copy-constructor except that it takes a
pointer to a Dog instead of a reference, and it has a second argument
that is a message that's concatenated to the argument Dog's
name. This is used to help trace the behavior of the program.
You can see that whenever a member
function prints information, it doesn't access that information directly
but instead sends *this to cout. This in turn calls the
ostream operator<<. It's valuable to do it this way
because if you want to reformat the way that Dog information is displayed
(as I did by adding the ‘[' and ‘]') you only need to do
it in one place.
A DogHouse contains a Dog*
and demonstrates the four functions you will always need to define when your
class contains pointers: all necessary ordinary constructors, the
copy-constructor, operator= (either define it or disallow it), and a
destructor. The operator= checks for self-assignment as a matter of
course, even though it's not strictly necessary here. This virtually
eliminates the possibility that you'll forget to check for self-assignment
if you do change the code so that it matters.

Reference Counting
In the example above, the
copy-constructor and operator= make a new copy of what the pointer points
to, and the destructor deletes it. However, if your object requires a lot of
memory or a high initialization overhead, you may want to avoid this copying. A
common approach to this problem is called reference
counting.
You give intelligence to the object that's being pointed to so it knows
how many objects are pointing to it. Then copy-construction or assignment means
attaching another pointer to an existing object and incrementing the reference
count. Destruction means reducing the reference count and destroying the object
if the reference count goes to zero.
But what if you want to write to the
object (the Dog in the example above)? More than one object may be using
this Dog, so you'd be modifying someone else's Dog as
well as yours, which doesn't seem very neighborly. To solve this
 “aliasing” problem, an additional technique
called copy-on-write is used. Before writing to a
block of memory, you make sure no one else is using it. If the reference count
is greater than one, you must make yourself a personal copy of that block before
writing it, so you don't disturb someone else's turf. Here's a
simple example of reference counting and copy-on-write:
//: C12:ReferenceCounting.cpp
// Reference count, copy-on-write
#include "../require.h"
#include <string>
#include <iostream>
using namespace std;
 
class Dog {
  string nm;
  int refcount;
  Dog(const string& name) 
    : nm(name), refcount(1) {
    cout << "Creating Dog: " << *this << endl;
  }
  // Prevent assignment:
  Dog& operator=(const Dog& rv);
public:
  // Dogs can only be created on the heap:
  static Dog* make(const string& name) {
    return new Dog(name);
  }
  Dog(const Dog& d) 
    : nm(d.nm + " copy"), refcount(1) {
    cout << "Dog copy-constructor: " 
         << *this << endl;
  }
  ~Dog() { 
    cout << "Deleting Dog: " << *this << endl;
  }
  void attach() { 
    ++refcount;
    cout << "Attached Dog: " << *this << endl;
  }
  void detach() {
    require(refcount != 0);
    cout << "Detaching Dog: " << *this << endl;
    // Destroy object if no one is using it:
    if(--refcount == 0) delete this;
  }
  // Conditionally copy this Dog.
  // Call before modifying the Dog, assign
  // resulting pointer to your Dog*.
  Dog* unalias() {
    cout << "Unaliasing Dog: " << *this << endl;
    // Don't duplicate if not aliased:
    if(refcount == 1) return this;
    --refcount;
    // Use copy-constructor to duplicate:
    return new Dog(*this);
  }
  void rename(const string& newName) {
    nm = newName;
    cout << "Dog renamed to: " << *this << endl;
  }
  friend ostream&
  operator<<(ostream& os, const Dog& d) {
    return os << "[" << d.nm << "], rc = " 
      << d.refcount;
  }
};
 
class DogHouse {
  Dog* p;
  string houseName;
public:
  DogHouse(Dog* dog, const string& house)
   : p(dog), houseName(house) {
    cout << "Created DogHouse: "<< *this << endl;
  }
  DogHouse(const DogHouse& dh)
    : p(dh.p),
      houseName("copy-constructed " + 
        dh.houseName) {
    p->attach();
    cout << "DogHouse copy-constructor: "
         << *this << endl;
  }
  DogHouse& operator=(const DogHouse& dh) {
    // Check for self-assignment:
    if(&dh != this) {
      houseName = dh.houseName + " assigned";
      // Clean up what you're using first:
      p->detach();
      p = dh.p; // Like copy-constructor
      p->attach();
    }
    cout << "DogHouse operator= : "
         << *this << endl;
    return *this;
  }
  // Decrement refcount, conditionally destroy
  ~DogHouse() {
    cout << "DogHouse destructor: " 
         << *this << endl;
    p->detach(); 
  }
  void renameHouse(const string& newName) {
    houseName = newName;
  }
  void unalias() { p = p->unalias(); }
  // Copy-on-write. Anytime you modify the 
  // contents of the pointer you must 
  // first unalias it:
  void renameDog(const string& newName) {
    unalias();
    p->rename(newName);
  }
  // ... or when you allow someone else access:
  Dog* getDog() {
    unalias();
    return p; 
  }
  friend ostream&
  operator<<(ostream& os, const DogHouse& dh) {
    return os << "[" << dh.houseName 
      << "] contains " << *dh.p;
  }
}; 
 
int main() {
  DogHouse 
    fidos(Dog::make("Fido"), "FidoHouse"),
    spots(Dog::make("Spot"), "SpotHouse");
  cout << "Entering copy-construction" << endl;
  DogHouse bobs(fidos);
  cout << "After copy-constructing bobs" << endl;
  cout << "fidos:" << fidos << endl;
  cout << "spots:" << spots << endl;
  cout << "bobs:" << bobs << endl;
  cout << "Entering spots = fidos" << endl;
  spots = fidos;
  cout << "After spots = fidos" << endl;
  cout << "spots:" << spots << endl;
  cout << "Entering self-assignment" << endl;
  bobs = bobs;
  cout << "After self-assignment" << endl;
  cout << "bobs:" << bobs << endl;
  // Comment out the following lines:
  cout << "Entering rename(\"Bob\")" << endl;
  bobs.getDog()->rename("Bob");
  cout << "After rename(\"Bob\")" << endl;
} ///:~

The class Dog is the object
pointed to by a DogHouse. It contains a reference count and functions to
control and read the reference count. There's a copy-constructor so you
can make a new Dog from an existing one.
The attach( ) function
increments the reference count of a Dog to indicate there's another
object using it. detach( ) decrements the reference count. If the
reference count goes to zero, then no one is using it anymore, so the member
function destroys its own object by saying delete this.
Before you make any modifications (such
as renaming a Dog), you should ensure that you aren't changing a
Dog that some other object is using. You do this by calling
DogHouse::unalias( ), which in turn calls
Dog::unalias( ).The latter function will return the existing
Dog pointer if the reference count is one (meaning no one else is
pointing to that Dog), but will duplicate the Dog if the reference
count is more than one.
The copy-constructor, instead of creating
its own memory, assigns Dog to the Dog of the source object. Then,
because there's now an additional object using that block of memory, it
increments the reference count by calling
Dog::attach( ).
The operator= deals with an object
that has already been created on the left side of the =, so it must first
clean that up by calling detach( ) for that Dog, which will
destroy the old Dog if no one else is using it. Then operator=
repeats the behavior of the copy-constructor. Notice that it first checks to
detect whether you're assigning the same object to
itself.
The destructor calls
detach( ) to conditionally destroy the Dog.
To implement copy-on-write, you must
control all the actions that write to your block of memory. For example, the
renameDog( ) member function allows you to change the values in the
block of memory. But first, it uses unalias( ) to prevent the
modification of an aliased Dog (a Dog with more than one
DogHouse object pointing to it). And if you need to produce a pointer to
a Dog from within a DogHouse, you unalias( ) that
pointer first.
main( ) tests the various
functions that must work correctly to implement reference counting: the
constructor, copy-constructor, operator=, and destructor. It also tests
the copy-on-write by calling renameDog( ). 
Here's the output (after a little
reformatting):
Creating Dog: [Fido], rc = 1
Created DogHouse: [FidoHouse] 
  contains [Fido], rc = 1
Creating Dog: [Spot], rc = 1
Created DogHouse: [SpotHouse] 
  contains [Spot], rc = 1
Entering copy-construction
Attached Dog: [Fido], rc = 2
DogHouse copy-constructor: 
  [copy-constructed FidoHouse] 
    contains [Fido], rc = 2
After copy-constructing bobs
fidos:[FidoHouse] contains [Fido], rc = 2
spots:[SpotHouse] contains [Spot], rc = 1
bobs:[copy-constructed FidoHouse] 
  contains [Fido], rc = 2
Entering spots = fidos
Detaching Dog: [Spot], rc = 1
Deleting Dog: [Spot], rc = 0
Attached Dog: [Fido], rc = 3
DogHouse operator= : [FidoHouse assigned]
  contains [Fido], rc = 3
After spots = fidos
spots:[FidoHouse assigned] contains [Fido],rc = 3
Entering self-assignment
DogHouse operator= : [copy-constructed FidoHouse]
  contains [Fido], rc = 3
After self-assignment
bobs:[copy-constructed FidoHouse] 
  contains [Fido], rc = 3
Entering rename("Bob")
After rename("Bob")
DogHouse destructor: [copy-constructed FidoHouse]
  contains [Fido], rc = 3
Detaching Dog: [Fido], rc = 3
DogHouse destructor: [FidoHouse assigned] 
  contains [Fido], rc = 2
Detaching Dog: [Fido], rc = 2
DogHouse destructor: [FidoHouse] 
  contains [Fido], rc = 1
Detaching Dog: [Fido], rc = 1
Deleting Dog: [Fido], rc = 0

By studying the output, tracing through
the source code, and experimenting with the program, you'll deepen your
understanding of these techniques.

Automatic operator=
creation
Because assigning an object to another
object of the same type is an activity most people expect to be possible,
the compiler will automatically create a type::operator=(type) if you
don't make one. The behavior of this operator mimics that of the
automatically created copy-constructor; if the class contains objects (or is
inherited from another class), the operator= for those objects is called
recursively. This is called memberwise
assignment.For
example,
//: C12:AutomaticOperatorEquals.cpp
#include <iostream>
using namespace std;
 
class Cargo {
public:
  Cargo& operator=(const Cargo&) {
    cout << "inside Cargo::operator=()" << endl;
    return *this;
  }
};
 
class Truck {
  Cargo b;
};
 
int main() {
  Truck a, b;
  a = b; // Prints: "inside Cargo::operator=()"
} ///:~

The automatically generated
operator= for Truck calls
Cargo::operator=.
In general, you don't want to let
the compiler do this for you. With classes of any sophistication (especially if
they contain pointers!) you want to explicitly create an operator=. If
you really don't want people to perform assignment, declare
operator= as a
private
function. (You don't need to define it unless you're using it inside
the
class.)
12-6 - 
Automatic type conversion
In C and C++, if the compiler sees an
expression or function call using a type that isn't quite the one it
needs, it can often perform an automatic type conversion from the type it has to
the type it
wants.
In C++, you can achieve this same effect for user-defined types by defining
automatic type conversion functions. These functions come in two flavors: a
particular type of constructor and an overloaded
operator.
12-6-1 - 
Constructor conversion
If you define a
constructor that takes as its single argument an object
(or reference) of another type, that constructor allows the compiler to perform
an automatic type conversion. For example,
//: C12:AutomaticTypeConversion.cpp
// Type conversion constructor
class One {
public:
  One() {}
};
 
class Two {
public:
  Two(const One&) {}
};
 
void f(Two) {}
 
int main() {
  One one;
  f(one); // Wants a Two, has a One
} ///:~

When the compiler sees f( )
called with a One object, it looks at the declaration for
f( ) and notices it wants a Two. Then it looks to see if
there's any way to get a Two from a One, and it finds the
constructor Two::Two(One), which it quietly calls. The resulting
Two object is handed to f( ).
In this case, automatic type conversion
has saved you from the trouble of defining two overloaded versions of
f( ). However, the cost is the hidden constructor call to
Two, which may matter if you're concerned about the efficiency of
calls to f( ).

Preventing constructor
conversion
There are times when automatic type
conversion via the constructor can cause problems. To turn it off, you modify
the constructor by prefacing with the keyword
explicit (which only works with constructors).
Used to modify the constructor of class Two in the example
above:
//: C12:ExplicitKeyword.cpp
// Using the "explicit" keyword
class One {
public:
  One() {}
};
 
class Two {
public:
  explicit Two(const One&) {}
};
 
void f(Two) {}
 
int main() {
  One one;
//!  f(one); // No auto conversion allowed
  f(Two(one)); // OK -- user performs conversion
} ///:~

By making Two's constructor
explicit, the compiler is told not to perform any automatic conversion using
that particular constructor (other non-explicit constructors in that
class can still perform automatic conversions). If the user wants to make the
conversion happen, the code must be written out. In the code above,
f(Two(one)) creates a
temporary object of type
Two from one, just like the compiler did in the previous
version.
12-6-2 - 
Operator conversion
The second way to produce automatic type
conversion is through operator
overloading.
You can create a member function that takes the current type and converts it to
the desired type using the operator keyword followed by the type you want
to convert to. This form of operator overloading is unique because you
don't appear to specify a return type - the return type is the
name of the operator you're overloading. Here's an
example:
//: C12:OperatorOverloadingConversion.cpp
class Three {
  int i;
public:
  Three(int ii = 0, int = 0) : i(ii) {}
};
 
class Four {
  int x;
public:
  Four(int xx) : x(xx) {}
  operator Three() const { return Three(x); }
};
 
void g(Three) {}
 
int main() {
  Four four(1);
  g(four);
  g(1);  // Calls Three(1,0)
} ///:~

With the constructor technique, the
destination class is performing the conversion, but with operators, the source
class performs the conversion. The value of the constructor technique is that
you can add a new conversion path to an existing system as you're creating
a new class. However, creating a single-argument constructor always
defines an automatic type conversion (even if it's got more than one
argument, if the rest of the arguments are defaulted), which may not be what you
want (in which case you can turn it off using explicit). In addition,
there's no way to use a constructor conversion from a user-defined type to
a built-in type; this is possible only with operator
overloading.

Reflexivity
One of the most convenient reasons to use
global overloaded operators instead of member operators
is that in the global versions, automatic type
conversion may be applied to either operand, whereas with member objects, the
left-hand operand must already be the proper type. If you want both operands to
be converted, the global versions can save a lot of coding. Here's a small
example:
//: C12:ReflexivityInOverloading.cpp
class Number {
  int i;
public:
  Number(int ii = 0) : i(ii) {}
  const Number
  operator+(const Number& n) const {
    return Number(i + n.i);
  }
  friend const Number
    operator-(const Number&, const Number&);
};
 
const Number
  operator-(const Number& n1,
            const Number& n2) {
    return Number(n1.i - n2.i);
}
 
int main() {
  Number a(47), b(11);
  a + b; // OK
  a + 1; // 2nd arg converted to Number
//! 1 + a; // Wrong! 1st arg not of type Number
  a - b; // OK
  a - 1; // 2nd arg converted to Number
  1 - a; // 1st arg converted to Number
} ///:~

Class Number has both a member
operator+ and a friend operator-. Because
there's a constructor that takes a single int argument, an
int can be automatically converted to a Number, but only under the
right conditions. In main( ), you can see that adding a
Number to another Number works fine because it's an exact
match to the overloaded operator. Also, when the compiler sees a Number
followed by a + and an int, it can match to the member function
Number::operator+ and convert the int argument to a Number
using the constructor. But when it sees an int, a +, and a
Number, it doesn't know what to do because all it has is
Number::operator+, which requires that the left operand already be a
Number object. Thus, the compiler issues an error.
With the friendoperator-, things are different. The compiler needs to fill in both
its arguments however it can; it isn't restricted to having a
Number as the left-hand argument. Thus, if it sees 
1 - a

it can convert the first argument to a
Number using the constructor.
Sometimes you want to be able to restrict
the use of your operators by making them members. For example, when multiplying
a matrix by a vector, the vector must go on the right. But if you want your
operators to be able to convert either argument, make the operator a friend
function.
Fortunately, the compiler will not take
1 - 1 and convert both arguments to Number objects and then
call operator-. That would mean that existing C code might suddenly
start to work differently. The compiler matches the “simplest”
possibility first, which is the built-in operator for the expression 1
-
1.
12-6-3 - 
Type conversion example
An example in which automatic type
conversion is extremely helpful occurs with any class that encapsulates
character strings (in this case, we will just implement the class using the
Standard C++ string class because it's simple). Without automatic
type conversion, if you want to use all the existing string functions from the
Standard C library, you have to create a member function for each one, like
this:
//: C12:Strings1.cpp
// No auto type conversion
#include "../require.h"
#include <cstring>
#include <cstdlib>
#include <string>
using namespace std;
 
class Stringc {
  string s;
public:
  Stringc(const string& str = "") : s(str) {}
  int strcmp(const Stringc& S) const {
    return ::strcmp(s.c_str(), S.s.c_str());
  }
  // ... etc., for every function in string.h
};
 
int main() {
  Stringc s1("hello"), s2("there");
  s1.strcmp(s2);
} ///:~

Here, only the strcmp( )
function is created, but you'd have to create a corresponding function for
every one in <cstring> that might be needed. Fortunately, you can
provide an automatic type conversion allowing access to all the functions in
<cstring>:
//: C12:Strings2.cpp
// With auto type conversion
#include "../require.h"
#include <cstring>
#include <cstdlib>
#include <string>
using namespace std;
 
class Stringc {
  string s;
public:
  Stringc(const string& str = "") : s(str) {}
  operator const char*() const { 
    return s.c_str(); 
  }
};
 
int main() {
  Stringc s1("hello"), s2("there");
  strcmp(s1, s2); // Standard C function
  strspn(s1, s2); // Any string function!
} ///:~

Now any function that takes a
char* argument can also take a Stringc argument because the
compiler knows how to make a char* from a
Stringc.
12-6-4 - 
Pitfalls in automatic type
conversion
Because the compiler must choose how to
quietly perform a type conversion, it can get into trouble if you don't
design your conversions correctly. A simple and obvious situation occurs with a
class X that can convert itself to an object of class Y with an
operator Y( ). If class Y has a constructor that takes a
single argument of type X, this represents the identical type conversion.
The compiler now has two ways to go from X to Y, so it will
generate an ambiguity error when that conversion
occurs:
//: C12:TypeConversionAmbiguity.cpp
class Orange; // Class declaration
 
class Apple {
public:
  operator Orange() const; // Convert Apple to Orange
};
 
class Orange {
public:
  Orange(Apple); // Convert Apple to Orange
};
 
void f(Orange) {}
 
int main() {
  Apple a;
//! f(a); // Error: ambiguous conversion
} ///:~

The obvious solution to this problem is
not to do it. Just provide a single path for automatic conversion from one type
to another.
A more difficult problem to spot occurs
when you provide automatic conversion to more than one type. This is sometimes
called
fan-out:
//: C12:TypeConversionFanout.cpp
class Orange {};
class Pear {};
 
class Apple {
public:
  operator Orange() const;
  operator Pear() const;
};
 
// Overloaded eat():
void eat(Orange);
void eat(Pear);
 
int main() {
  Apple c;
//! eat(c);
  // Error: Apple -> Orange or Apple -> Pear ???
} ///:~

Class Apple has automatic
conversions to both Orange and Pear. The insidious thing about
this is that there's no problem until someone innocently comes along and
creates two overloaded versions of eat( ). (With only one version,
the code in main( ) works fine.)
Again, the solution - and the
general watchword with automatic type conversion - is to provide only a
single automatic conversion from one type to another. You can have conversions
to other types; they just shouldn't be automatic. You can create
explicit function calls with names like makeA( ) and
makeB( ).

Hidden activities
Automatic type conversion can introduce
more underlying activities than you may expect. As a little brain teaser, look
at this modification of CopyingVsInitialization.cpp:
//: C12:CopyingVsInitialization2.cpp
class Fi {};
 
class Fee {
public:
  Fee(int) {}
  Fee(const Fi&) {}
};
 
class Fo {
  int i;
public:
  Fo(int x = 0) : i(x) {}
  operator Fee() const { return Fee(i); }
};
 
int main() {
  Fo fo;
  Fee fee = fo;
} ///:~

There is no constructor to create the
Fee fee from a Fo object. However, Fo has an automatic type
conversion to a Fee. There's no copy-constructor to create a
Fee from a Fee, but this is one of the special functions the
compiler can create for you. (The default constructor, copy-constructor,
operator=, and destructor can be synthesized automatically by the
compiler.) So for the relatively innocuous statement
Fee fee = fo;

the automatic type conversion operator is
called, and a copy-constructor is created.
Use automatic type conversion carefully.
As with all operator overloading, it's excellent when it significantly
reduces a coding task, but it's usually not worth using
gratuitously.
12-7 - 
Summary
The whole reason for the existence of
operator overloading is for those situations when it makes life easier.
There's nothing particularly magical about it; the overloaded operators
are just functions with funny names, and the function calls happen to be made
for you by the compiler when it spots the right pattern. But if operator
overloading doesn't provide a significant benefit to you (the creator of
the class) or the user of the class, don't confuse the issue by adding
it.
12-8 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from www.BruceEckel.com.

		Create a simple class with
an overloaded operator++. Try calling this operator in both pre- and
postfix form and see what kind of compiler warning you
get.
		Create a simple
class containing an int and overload the operator+ as a member
function. Also provide a print( ) member function that takes an
ostream& as an argument and prints to that ostream&.Test your class to show that it works
correctly.
		Add a
binary operator- to Exercise 2 as a member function. Demonstrate that you
can use your objects in complex expressions like

a + b -
c.
		Add an
operator++ and operator-- to Exercise 2, both the prefix and the
postfix versions, such that they return the incremented or decremented object.
Make sure that the postfix versions return the correct value.

		Modify the
increment and decrement operators in Exercise 4 so that the prefix versions
return a non-const reference and the
postfix versions return a const
object. Show that they work correctly and explain why this would be done in
practice.
		Change the
print( ) function in Exercise 2 so that it is the overloaded
operator<< as in
IostreamOperatorOverloading.cpp.
		Modify
Exercise 3 so that the operator+ and operator- are non-member
functions. Demonstrate that they still work
correctly.
		Add the
unary operator- to Exercise 2 and demonstrate that it works
correctly.
		Create a
class that contains a single private char. Overload the iostream
operators << and >> (as in
IostreamOperatorOverloading.cpp) and test them. You can test them with
fstreams, stringstreams, and cin and
cout.
		Determine
the dummy constant value that your compiler passes for postfix operator++
and operator--.

		Write a
Number class that holds a double, and add overloaded operators for
+, -, *, /, and assignment. Choose the return values for these
functions so that expressions can be chained together, and for efficiency. Write
an automatic type conversion operator
double( ).
		Modify
Exercise 11 so that the return value optimization is used, if you have
not already done
so.
		Create a class
that contains a pointer, and demonstrate that if you allow the compiler to
synthesize the operator= the result of using that operator will be
pointers that are aliased to the same storage. Now fix the problem by defining
your own operator= and demonstrate that it corrects the aliasing. Make
sure you check for self-assignment and handle that case
properly.
		Write a
class called Bird that contains a string member and a static
int.In the default constructor, use the int to automatically
generate an identifier that you build in the string, along with the name
of the class (Bird #1, Bird #2, etc.). Add an operator<<
for ostreams to print out the Bird objects. Write an
assignment operator= and a copy-constructor. In main( ),
verify that everything works
correctly.
		Write a
class called BirdHouse that contains an object, a pointer and a reference
for class Bird from Exercise 14. The constructor should take the three
Birds as arguments. Add an operator<< for ostreams
for BirdHouse. Disallow the assignment
operator= and copy-constructor. In
main( ), verify that everything works correctly. 
		Add
an int data member to both Bird and BirdHouse in Exercise
15. Add member operators +, -, *, and / that use the
int members to perform the operations on the respective members. Verify
that these
work.
		Repeat
Exercise 16 using non-member
operators.
		Add an
operator-- to SmartPointer.cpp and
NestedSmartPointer.cpp.
		Modify
CopyingVsInitialization.cpp so that all of the constructors print a
message that tells you what's going on. Now verify that the two forms of
calls to the copy-constructor (the assignment form and the parenthesized form)
are
equivalent.
		Attempt
to create a non-member operator= for a class and see what kind of
compiler message you
get.
		Create a class
with an  assignment operator
that has a second argument, a string that has a default value that
says “op= call.” Create a function that
assigns an object of your class to another one and show that your
assignment operator is called
correctly.
		In
CopyingWithPointers.cpp, remove the operator= in DogHouse
and show that the compiler-synthesized operator= correctly copies the
string but simply aliases the Dog
pointer.
		In
ReferenceCounting.cpp, add a static int and an ordinary int
as data members to both Dog and DogHouse. In all constructors
for both classes, increment the static int and assign the result to the
ordinary int to keep track of the number of objects that have been
created. Make the necessary modifications so that all the printing statements
will say the int identifiers of the objects
involved.
		Create a
class containing a string as a data member. Initialize the string
in the constructor, but do not create a copy-constructor or operator=.
Make a second class that has a member object of your first class; do not create
a copy-constructor or operator= for this class either. Demonstrate that
the copy-constructor and operator= are properly synthesized by the
compiler.
		Combine
the classes in OverloadingUnaryOperators.cpp and Integer.cpp.

		Modify
PointerToMemberOperator.cpp by adding two new member functions to
Dog that take no arguments and return void. Create and test an
overloaded operator->* that works with your two new
functions.
		Add an
operator->* to
NestedSmartPointer.cpp.
		Create
two classes, Apple and Orange. In Apple, create a
constructor that takes an Orange as an argument. Create a function that
takes an Apple and call that function with an Orange to show that
it works. Now make the Apple constructor explicit to demonstrate
that the automatic type conversion is thus prevented. Modify the call to your
function so that the conversion is made explicitly and thus
succeeds.
		Add a
global operator* to ReflexivityInOverloading.cpp and demonstrate
that it is
reflexive.
		Create
two classes and create an operator+ and the conversion functions such
that addition is reflexive for the two
classes.
		Fix
TypeConversionFanout.cpp by creating an explicit function to call to
perform the type conversion, instead of one of the automatic conversion
operators.
		Write
simple code that uses the +, -, *, and / operators
for doubles. Figure out how your compiler generates assembly code and
look at the assembly language that's generated to discover and explain
what's going on under the
hood.


13 - Dynamic Object Creation
Sometimes you know the exact
quantity, type, and lifetime of
the objects in your program. But not
always.
How many planes will an air-traffic
system need to handle? How many shapes will a CAD system use? How many nodes
will there be in a network?
To solve the general programming problem,
it's essential that you be able to create and destroy objects at runtime.
Of course, C has always provided the dynamic memory allocation functions
malloc( )
and free( ) (along with variants of malloc( )) that
allocate storage from the heap (also called the free store) at
runtime.
However, this simply won't work in
C++. The constructor doesn't allow you to hand it
the address of the memory to initialize, and for good reason. If you could do
that, you
might:
		Forget. Then guaranteed
initialization of objects in C++ wouldn't be
guaranteed.
		Accidentally
do something to the object before you initialize it, expecting the right thing
to happen.
		Hand it
the wrong-sized object.

And of
course, even if you did everything correctly, anyone who modifies your program
is prone to the same errors. Improper initialization is responsible for a large
portion of programming problems, so it's especially important to guarantee
constructor calls for objects created on the heap.
So how does C++ guarantee proper
initialization
and cleanup, but allow you to create objects dynamically on the
heap?
The answer is by bringing dynamic object
creation into the core of the language. malloc( ) and
free( ) are library functions, and thus outside the control of the
compiler. However, if you have an operator to perform the combined act of
dynamic storage allocation and initialization and another operator to perform
the combined act of cleanup and releasing storage, the compiler can still
guarantee that constructors and destructors will be called for all
objects.
In this chapter, you'll learn how
C++'s new and delete elegantly solve this problem by safely
creating objects on the
heap.
13-1 - 
Object creation
When a C++ object is created, two events
occur:
		Storage is allocated for
the object.
		The
constructor is called to initialize that
storage.

By now you should
believe that step two always happens. C++ enforces it because
uninitialized objects are a major source of program bugs. It doesn't
matter where or how the object is created - the constructor is always
called.
Step one, however, can occur in several
ways, or at alternate
times:
		Storage can be allocated
before the program begins, in the static storage area. This storage exists for
the life of the
program.
		Storage can
be created on the stack whenever a particular execution point is reached (an
opening brace). That storage is released automatically at the complementary
execution point (the closing brace). These stack-allocation operations are built
into the instruction set of the processor and are very efficient. However, you
have to know exactly how many variables you need when you're writing the
program so the compiler can generate the right
code.
		Storage can be
allocated from a pool of memory called the heap (also known as the free store).
This is called dynamic memory allocation. To allocate this memory, a function is
called at runtime; this means you can decide at any time that you want some
memory and how much you need. You are also responsible for determining when to
release the memory, which means the lifetime of that memory can be as long as
you choose - it isn't determined by
scope.

Often these three
regions are placed in a single contiguous piece of physical memory: the static
area, the stack, and the heap (in an order determined by the compiler writer).
However, there are no rules. The stack may be in a special place, and the heap
may be implemented by making calls for chunks of memory from the operating
system. As a programmer, these things are normally shielded from you, so all you
need to think about is that the memory is there when you call for
it.
13-1-1 - 
C's approach to the heap
To allocate memory dynamically at
runtime, C provides functions in its standard library:
malloc( ) and its variants
calloc( ) and
realloc( ) to produce memory from the
heap, and
free( ) to release the memory back to the
heap. These functions are pragmatic but primitive and require understanding and
care on the part of the programmer. To create an instance of a class on the heap
using C's dynamic memory functions, you'd have to do something like
this:
//: C13:MallocClass.cpp
// Malloc with class objects
// What you'd have to do if not for "new"
#include "../require.h"
#include <cstdlib> // malloc() & free()
#include <cstring> // memset()
#include <iostream>
using namespace std;
 
class Obj {
  int i, j, k;
  enum { sz = 100 };
  char buf[sz];
public:
  void initialize() { // Can't use constructor
    cout << "initializing Obj" << endl;
    i = j = k = 0;
    memset(buf, 0, sz);
  }
  void destroy() const { // Can't use destructor
    cout << "destroying Obj" << endl;
  }
};
 
int main() {
  Obj* obj = (Obj*)malloc(sizeof(Obj));
  require(obj != 0);
  obj->initialize();
  // ... sometime later:
  obj->destroy();
  free(obj);
} ///:~

You can see the use of
malloc( ) to create storage for the object in the
line:
Obj* obj = (Obj*)malloc(sizeof(Obj));

Here, the user must determine the size of
the object (one place for an error). malloc( ) returns a
void* because it just produces a patch of memory, not an object. C++
doesn't allow a void* to be assigned to any other pointer, so it
must be cast.
Because malloc( ) may fail to
find any memory (in which case it returns zero), you must check the returned
pointer to make sure it was successful.
But the worst problem is this
line:
Obj->initialize();

If users make it this far correctly, they
must remember to initialize the object before it is used. Notice that a
constructor was not used because the constructor cannot
be called
explicitly(50)
- it's called for you by the compiler when an object is created. The
problem here is that the user now has the option to forget to perform the
initialization before the object is used, thus reintroducing a major source of
bugs.
It also turns out that many programmers
seem to find C's dynamic memory functions too confusing and complicated;
it's not uncommon to find C programmers who use virtual memory
machines allocating huge arrays of variables in the
static storage area to avoid thinking about dynamic memory allocation. Because
C++ is attempting to make library use safe and effortless for the casual
programmer, C's approach to dynamic memory is
unacceptable.
13-1-2 - 
operator new
The solution in C++ is to combine all the
actions necessary to create an object into a single operator called
new. When you create an
object with new (using a
new-expression), it
allocates enough storage on the heap to hold the object and calls the
constructor for that storage. Thus, if you say
MyType *fp = new MyType(1,2);

at runtime, the equivalent of
malloc(sizeof(MyType)) is called (often, it is literally a call to
malloc( )), and the constructor for
MyType is called with the resulting address as the this
pointer, using (1,2) as the argument list. By the
time the pointer is assigned to fp, it's a live, initialized object
- you can't even get your hands on it before then. It's also
automatically the proper MyType type so no cast
is necessary.
The default new checks to make
sure the memory allocation was successful before passing the address to the
constructor, so you don't have to explicitly determine if the call was
successful. Later in the chapter you'll find out what happens if
there's no memory left.
You can create a new-expression using any
constructor available for the class. If the constructor has no arguments, you
write the new-expression without the constructor argument list:
MyType *fp = new MyType;

Notice how simple the process of creating
objects on the heap becomes - a single expression, with all the sizing,
conversions, and safety checks built in. It's as easy to create an object
on the heap as it is on the
stack.
13-1-3 - 
operator delete
The complement to the new-expression is
the delete-expression, which first calls the
destructor and then releases the memory (often with a call to
free( )). Just as a new-expression returns a
pointer to the object, a delete-expression requires the address of an
object.
delete fp;

This destructs and then releases the
storage for the dynamically allocated MyType object created
earlier.
delete can
be called only for an object created by new. If you malloc( )
(or calloc( ) or realloc( )) an object and then
delete it, the behavior is undefined. Because most default
implementations of new and delete use malloc( ) and
free( ), you'd probably end up releasing the memory without
calling the destructor.
If the pointer you're deleting is
zero, nothing will happen. For this reason, people often
recommend setting a pointer to zero immediately after you delete it, to prevent
deleting it twice. Deleting an object more than once is definitely a bad thing
to do, and will cause
problems.
13-1-4 - 
A simple example
This example shows that initialization
takes place:
//: C13:Tree.h
#ifndef TREE_H
#define TREE_H
#include <iostream>
 
class Tree {
  int height;
public:
  Tree(int treeHeight) : height(treeHeight) {}
  ~Tree() { std::cout << "*"; }
  friend std::ostream&
  operator<<(std::ostream& os, const Tree* t) {
    return os << "Tree height is: "
              << t->height << std::endl;
  }
}; 
#endif // TREE_H ///:~

//: C13:NewAndDelete.cpp
// Simple demo of new & delete
#include "Tree.h"
using namespace std;
 
int main() {
  Tree* t = new Tree(40);
  cout << t;
  delete t;
} ///:~

We can prove that the constructor is
called by printing out the value of the Tree. Here, it's done by
overloading the operator<< to use with an ostream and a
Tree*.
Note, however, that even though the function is declared as a
friend, it is defined as an inline! This is a
mere convenience - defining a friend function as an inline to a
class doesn't change the friend status or the fact that it's
a global function and not a class member function. Also notice that the return
value is the result of the entire output expression, which is an
ostream& (which it must be, to satisfy the return value type of the
function).
13-1-5 - 
Memory manager overhead
When you create automatic objects on the
stack, the size of the objects
and their lifetime is built
right into the generated code, because the compiler knows the exact type,
quantity, and scope. Creating objects on the heap
involves
additional overhead, both in time and in space. Here's a typical scenario.
(You can replace malloc( ) with
calloc( ) or
realloc( ).)
You call malloc( ), which
requests a block of memory from the pool. (This code may actually be part of
malloc( ).)
The pool is searched for a block of
memory large enough to satisfy the request. This is done by checking a map or
directory of some sort that shows which blocks are currently in use and which
are available. It's a quick process, but it may take several tries so it
might not be deterministic - that is, you can't necessarily count on
malloc( ) always taking exactly the same
amount of time.
Before a pointer to that block is
returned, the size and location of the block must be recorded so further calls
to malloc( ) won't use it, and so that when you call
free( ), the system knows how much memory to
release.
The way all this is implemented can vary
widely. For example, there's nothing to prevent primitives for memory
allocation being implemented in the processor. If you're curious, you can
write test programs to try to guess the way your malloc( ) is
implemented. You can also read the library source code, if you have it (the GNU
C sources are always
available).
13-2 - 
Early examples redesigned
Using new and delete, the
Stash example introduced previously in this book can be rewritten using
all the features discussed in the book so far. Examining the new code will also
give you a useful review of the topics.
At this point in the book, neither the
Stash nor Stack classes will
“own” the objects
they point to; that is, when the Stash or Stack object goes out of
scope, it will not call delete for all the objects it points to. The
reason this is not possible is because, in an attempt to be generic, they hold
void pointers. If you
delete a void pointer, the only thing that happens is the memory
gets released, because there's no type information and no way for the
compiler to know what destructor to
call.
13-2-1 - 
delete void* is probably a
bug
It's worth making a point that if
you call delete for a void*, it's almost certainly going to
be a bug in your program unless the destination of that pointer is very simple;
in particular, it should not have a destructor. Here's an example to show
you what happens:
//: C13:BadVoidPointerDeletion.cpp
// Deleting void pointers can cause memory leaks
#include <iostream>
using namespace std;
 
class Object {
  void* data; // Some storage
  const int size;
  const char id;
public:
  Object(int sz, char c) : size(sz), id(c) {
    data = new char[size];
    cout << "Constructing object " << id 
         << ", size = " << size << endl;
  }
  ~Object() { 
    cout << "Destructing object " << id << endl;
    delete []data; // OK, just releases storage,
    // no destructor calls are necessary
  }
};
 
int main() {
  Object* a = new Object(40, 'a');
  delete a;
  void* b = new Object(40, 'b');
  delete b;
} ///:~

The class Object contains a
void* that is initialized to “raw” data (it doesn't
point to objects that have destructors). In the Object destructor,
delete is called for this void* with no ill effects, since the
only thing we need to happen is for the storage to be released.
However, in main( ) you can
see that it's very necessary that delete know what type of object
it's working with. Here's the output:
Constructing object a, size = 40
Destructing object a
Constructing object b, size = 40

Because delete a knows that
a points to an Object, the destructor is called and thus the
storage allocated for data is released. However, if you manipulate an
object through a void* as in the case of delete b, the only thing
that happens is that the storage for the Object is released - but
the destructor is not called so there is no release of the memory that
data points to. When this program compiles, you probably won't see
any warning messages; the compiler assumes you know what you're doing. So
you get a very quiet memory leak.
If you have a
memory leak in your program, search through all the
delete statements and check the type of pointer being deleted. If
it's a void* then you've probably found one source of your
memory leak (C++ provides ample other opportunities for memory leaks,
however).
13-2-2 - 
Cleanup responsibility with pointers
To make the Stash and Stack
containers flexible (able to hold any type of object), they will hold
void pointers. This means that when a pointer is returned from the
Stash or Stack object, you must cast it to the proper type before
using it; as seen above, you must also cast it to the proper type before
deleting it or you'll get a memory leak.
The other memory leak issue has to do
with making sure that delete is actually called for each object pointer
held in the container. The container cannot “own” the pointer
because it holds it as a void* and thus cannot perform the proper
cleanup. The user must be responsible for cleaning up the objects. This produces
a serious problem if you add pointers to objects created on the stack and
objects created on the heap to the same container because a
delete-expression is unsafe for a pointer that hasn't been allocated on
the heap. (And when you fetch a pointer back from the container, how will you
know where its object has been allocated?) Thus, you must be sure that objects
stored in the following versions of Stash and Stack are made only
on the heap, either through careful programming or by creating classes that can
only be built on the heap.
It's also important to make sure
that the client programmer takes responsibility for cleaning up all the pointers
in the container. You've seen in previous examples how the Stack
class checks in its destructor that all the Link objects have been
popped. For a Stash of pointers, however, another approach is
needed.
13-2-3 - 
Stash for pointers
This new version of the Stash
class, called PStash, holds pointers to objects that exist by
themselves on the heap, whereas the old Stash in earlier chapters copied
the objects by value into the Stash container. Using new and
delete, it's easy and safe to hold pointers to objects that have
been created on the heap.
Here's the header file for the
“pointer Stash”:
//: C13:PStash.h
// Holds pointers instead of objects
#ifndef PSTASH_H
#define PSTASH_H
 
class PStash {
  int quantity; // Number of storage spaces
  int next; // Next empty space
   // Pointer storage:
  void** storage;
  void inflate(int increase);
public:
  PStash() : quantity(0), storage(0), next(0) {}
  ~PStash();
  int add(void* element);
  void* operator[](int index) const; // Fetch
  // Remove the reference from this PStash:
  void* remove(int index);
  // Number of elements in Stash:
  int count() const { return next; }
};
#endif // PSTASH_H ///:~

The underlying data elements are fairly
similar, but now storage is an array of void pointers, and the
allocation of storage for that array is performed with
new instead of malloc( ). In the
expression
void** st = new void*[quantity + increase];

the type of object allocated is a
void*, so the expression allocates an array of void
pointers.
The destructor deletes the storage where
the void pointers are held rather than attempting to delete what they
point at (which, as previously noted, will release their storage and not call
the destructors because a void
pointer has no type
information).
The other change is the replacement of
the fetch( ) function with operator[
], which makes more sense syntactically. Again,
however, a void* is returned, so the user must remember what types are
stored in the container and cast the pointers when fetching them out (a problem
that will be repaired in future chapters).
Here are the member function
definitions:
//: C13:PStash.cpp {O}
// Pointer Stash definitions
#include "PStash.h"
#include "../require.h"
#include <iostream>
#include <cstring> // 'mem' functions
using namespace std;
 
int PStash::add(void* element) {
  const int inflateSize = 10;
  if(next >= quantity)
    inflate(inflateSize);
  storage[next++] = element;
  return(next - 1); // Index number
}
 
// No ownership:
PStash::~PStash() {
  for(int i = 0; i < next; i++)
    require(storage[i] == 0, 
      "PStash not cleaned up");
  delete []storage; 
}
 
// Operator overloading replacement for fetch
void* PStash::operator[](int index) const {
  require(index >= 0,
    "PStash::operator[] index negative");
  if(index >= next)
    return 0; // To indicate the end
  // Produce pointer to desired element:
  return storage[index];
}
 
void* PStash::remove(int index) {
  void* v = operator[](index);
  // "Remove" the pointer:
  if(v != 0) storage[index] = 0;
  return v;
}
 
void PStash::inflate(int increase) {
  const int psz = sizeof(void*);
  void** st = new void*[quantity + increase];
  memset(st, 0, (quantity + increase) * psz);
  memcpy(st, storage, quantity * psz);
  quantity += increase;
  delete []storage; // Old storage
  storage = st; // Point to new memory
} ///:~

The add( ) function is
effectively the same as before, except that a pointer is stored instead of a
copy of the whole object.
The inflate( ) code is
modified to handle the allocation of an array of void* instead of the
previous design, which was only working with raw bytes. Here, instead of using
the prior approach of copying by array indexing, the Standard C library function
memset( ) is first used to set all the new
memory to zero (this is not strictly necessary, since the PStash is
presumably managing all the memory correctly - but it usually
doesn't hurt to throw in a bit of extra care). Then
memcpy( ) moves the existing data from the
old location to the new. Often, functions like memset( ) and
memcpy( ) have been optimized over time, so they may be faster than
the loops shown previously. But with a function like inflate( ) that
will probably not be used that often you may not see a performance difference.
However, the fact that the function calls are more concise than the loops may
help prevent coding errors.
To put the responsibility of object
cleanup squarely on the shoulders of the client programmer, there are two ways
to access the pointers in the PStash: the operator[], which simply
returns the pointer but leaves it as a member of the container, and a second
member function remove( ), which returns the pointer but also
removes it from the container by assigning that position to zero. When the
destructor for PStash is called, it checks to make sure that all object
pointers have been removed; if not, you're notified so you can prevent a
memory leak (more elegant solutions will be forthcoming in later
chapters).

A test
Here's the old test program for
Stash rewritten for the PStash:
//: C13:PStashTest.cpp
//{L} PStash
// Test of pointer Stash
#include "PStash.h"
#include "../require.h"
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
 
int main() {
  PStash intStash;
  // 'new' works with built-in types, too. Note
  // the "pseudo-constructor" syntax:
  for(int i = 0; i < 25; i++)
    intStash.add(new int(i));
  for(int j = 0; j < intStash.count(); j++)
    cout << "intStash[" << j << "] = "
         << *(int*)intStash[j] << endl;
  // Clean up:
  for(int k = 0; k < intStash.count(); k++)
    delete intStash.remove(k);
  ifstream in ("PStashTest.cpp");
  assure(in, "PStashTest.cpp");
  PStash stringStash;
  string line;
  while(getline(in, line))
    stringStash.add(new string(line));
  // Print out the strings:
  for(int u = 0; stringStash[u]; u++)
    cout << "stringStash[" << u << "] = "
         << *(string*)stringStash[u] << endl;
  // Clean up:
  for(int v = 0; v < stringStash.count(); v++)
    delete (string*)stringStash.remove(v);
} ///:~

As before, Stashes are created and
filled with information, but this time the information is the pointers resulting
from new-expressions. In the first case, note the line:
intStash.add(new int(i));

The expression new int(i) uses the
pseudo-constructor form, so
storage for a new int object is created on the heap, and the int
is initialized to the value i.
During printing, the value returned by
PStash::operator[ ] must be cast to the proper type; this is repeated for
the rest of the PStash objects in the program. It's an undesirable
effect of using void pointers
as the underlying representation
and will be fixed in later chapters.
The second test opens the source code
file and reads it one line at a time into another PStash. Each line is
read into a string using
getline( ), then a new string
is created from line to make an independent copy of that line. If we just
passed in the address of line each time, we'd get a whole bunch of
pointers pointing to line, which would only contain the last line that
was read from the file.
When fetching the pointers, you see the
expression:
*(string*)stringStash[v]

The pointer returned from operator[
] must be cast to a string* to give it the proper type. Then the
string* is dereferenced so the expression evaluates to an object, at
which point the compiler sees a string object to send to
cout.
The objects created on the heap must be
destroyed through the use of the remove( ) statement or else
you'll get a message at runtime telling you that you haven't
completely cleaned up the objects in the PStash.Notice that in
the case of the int pointers, no cast is necessary because there's
no destructor for an int and all we need is memory
release:
delete intStash.remove(k);

However, for the string pointers,
if you forget to do the cast you'll have another (quiet) memory leak, so
the cast is essential:
delete (string*)stringStash.remove(k);

Some of these issues (but not all) can be
removed using templates (which you'll learn about in Chapter
16).
13-3 - 
new & delete for
arrays
In C++, you can create arrays of objects
on the stack or on the heap with equal ease, and (of course) the constructor is
called for each object in the array. There's one constraint, however:
There must be a default
constructor, except for
aggregate initialization on the stack (see Chapter 6), because a constructor
with no arguments must be called for every object.
When creating arrays of objects on the
heap using new, there's something else you must do. An example of
such an array is
MyType* fp = new MyType[100];

This allocates enough storage on the heap
for 100 MyType objects and calls the constructor for each one. Now,
however, you simply have a MyType*, which is exactly the same as
you'd get if you said
MyType* fp2 = new MyType;

to create a single object. Because you
wrote the code, you know that fp is actually the starting address of an
array, so it makes sense to select array elements using an expression like
fp[3]. But what happens when you destroy the array? The
statements
delete fp2; // OK
delete fp;  // Not the desired effect

look exactly the same, and their effect
will be the same. The destructor will be called for the MyType object
pointed to by the given address, and then the storage will be released. For
fp2 this is fine, but for fp this means that the other 99
destructor calls won't be made. The proper amount of storage will still be
released, however, because it is allocated in one big chunk, and the size of the
whole chunk is stashed somewhere by the allocation routine.
The solution requires you to give the
compiler the information that this is actually the starting address of an array.
This is accomplished with the following syntax:
delete []fp;

The empty brackets tell the compiler to
generate code that fetches the number of objects in the array, stored somewhere
when the array is created, and calls the destructor for that many array objects.
This is actually an improved syntax from the earlier form, which you may still
occasionally see in old code:
delete [100]fp;

which forced the programmer to include
the number of objects in the array and introduced the possibility that the
programmer would get it wrong. The additional overhead of letting the compiler
handle it was very low, and it was considered better to specify the number of
objects in one place instead of
two.
13-3-1 - 
Making a pointer more like an
array
As an aside, the fp defined above
can be changed to point to anything, which doesn't make sense for the
starting address of an array. It makes more sense to define it as a constant, so
any attempt to modify the pointer will be flagged as an error. To get this
effect, you might try
int const* q = new int[10];

or
const int* q = new int[10];

but in both cases the const will
bind to the int, that is, what is being pointed to, rather than
the quality of the pointer itself. Instead, you must say
int* const q = new int[10];

Now the array elements in q can be
modified, but any change to q (like q++) is illegal, as it is with
an ordinary array
identifier.
13-4 - 
Running out of storage
What happens when the operator new(
) cannot find a
contiguous block of storage large enough to hold the desired object? A special
function called the new-handler is called. Or
rather, a pointer to a function is checked, and if the pointer is nonzero, then
the function it points to is called. 
The default behavior for the new-handler
is to throw an exception, a subject covered in
Volume 2. However, if you're using heap allocation in your program,
it's wise to at least replace the new-handler with a message that says
you've run out of memory and then aborts the program. That way, during
debugging, you'll have a clue about what happened. For the final program
you'll want to use more robust recovery.
You replace the new-handler by including
new.h and then calling set_new_handler( ) with the address of
the function you want installed:
//: C13:NewHandler.cpp
// Changing the new-handler
#include <iostream>
#include <cstdlib>
#include <new>
using namespace std;
 
int count = 0;
 
void out_of_memory() {
  cerr << "memory exhausted after " << count 
    << " allocations!" << endl;
  exit(1);
}
 
int main() {
  set_new_handler(out_of_memory);
  while(1) {
    count++;
    new int[1000]; // Exhausts memory
  }
} ///:~

The new-handler function must take no
arguments and have a void return value. The while loop will keep
allocating int objects (and throwing away their return addresses) until
the free store is exhausted. At the very next call to new, no storage can
be allocated, so the new-handler will be called.
The behavior of the new-handler is tied
to operator new( ), so if you overload operator new(
) (covered in the next section) the new-handler will not be called by
default. If you still want the new-handler to be called you'll have to
write the code to do so inside your overloaded operator new(
).
Of course, you can write more
sophisticated new-handlers, even one to try to reclaim memory (commonly known as
a garbage collector). This is not a job for the
novice
programmer.
13-5 - 
Overloading new &
delete
When you create a
new-expression, two things occur. First, storage is
allocated using the operator new( ), then the constructor is
called. In a delete-expression, the destructor is
called, then storage is deallocated using the operator delete( ).
The constructor and destructor calls are never under your control (otherwise you
might accidentally subvert them), but you can change the storage
allocation functions operator new( ) and operator delete(
).
The memory allocation
system used by new and
delete is designed for general-purpose use. In special situations,
however, it doesn't serve your needs. The most common reason to change the
allocator is efficiency: You might be creating and
destroying so many objects of a particular class that it has become a speed
bottleneck. C++ allows you to overload new and delete to implement
your own storage allocation scheme, so you can handle problems like
this.
Another issue is
heap fragmentation. By
allocating objects of different sizes it's possible to break up the heap
so that you effectively run out of storage. That is, the storage might be
available, but because of fragmentation no piece is big enough to satisfy your
needs. By creating your own allocator for a particular class, you can ensure
this never happens.
In embedded and real-time systems, a
program may have to run for a very long time with restricted resources. Such a
system may also require that memory allocation always take the same amount of
time, and there's no allowance for heap exhaustion or fragmentation. A
custom memory allocator is the solution; otherwise, programmers will avoid using
new and delete altogether in such cases and miss out on a valuable
C++ asset.
When you overload operator new(
) and operator delete( ), it's important to remember
that you're changing only the way raw storage is allocated. The
compiler will simply call your new instead of the default version to
allocate storage, then call the constructor for that storage. So, although the
compiler allocates storage and calls the constructor when it sees
new, all you can change when you overload new is the storage
allocation portion. (delete has a similar limitation.)
When you overload operatornew( ), you also replace the behavior when it runs out of memory,
so you must decide what to do in your operator new( ): return
zero, write a loop to call the new-handler and retry allocation, or (typically)
throw a bad_alloc exception (discussed in Volume 2, available at
www.BruceEckel.com).
Overloading new and delete
is like overloading any other operator. However, you have a choice of
overloading the global allocator or using a different allocator for a particular
class.
13-5-1 - 
Overloading global new &
delete
This is the drastic approach, when the
global versions of new and delete are unsatisfactory for the whole
system. If you overload the global versions, you make the defaults completely
inaccessible - you can't even call them from inside your
redefinitions.
The overloaded new must take an
argument of size_t (the Standard C standard type
for sizes). This argument is generated and passed to you by the compiler and is
the size of the object you're responsible for allocating. You must return
a pointer either to an object of that size (or bigger, if you have some reason
to do so), or to zero if you can't find the memory (in which case the
constructor is not called!). However, if you can't find the memory,
you should probably do something more informative than just returning zero, like
calling the new-handler or throwing an exception, to signal that there's a
problem.
The return value of operator new(
) is a void*, not a pointer to any particular type. All
you've done is produce memory, not a finished object - that
doesn't happen until the constructor is called, an act the compiler
guarantees and which is out of your control.
The operator delete( )
takes a void* to memory that was allocated by operator new.
It's a void* because operator delete only gets the pointer
after the destructor is called, which removes the object-ness from the
piece of storage. The return type is void.
Here's a simple example showing how
to overload the global new and delete:
//: C13:GlobalOperatorNew.cpp
// Overload global new/delete
#include <cstdio>
#include <cstdlib>
using namespace std;
 
void* operator new(size_t sz) {
  printf("operator new: %d Bytes\n", sz);
  void* m = malloc(sz);
  if(!m) puts("out of memory");
  return m;
}
 
void operator delete(void* m) {
  puts("operator delete");
  free(m);
}
 
class S {
  int i[100];
public:
  S() { puts("S::S()"); }
  ~S() { puts("S::~S()"); }
};
 
int main() {
  puts("creating & destroying an int");
  int* p = new int(47);
  delete p;
  puts("creating & destroying an s");
  S* s = new S;
  delete s;
  puts("creating & destroying S[3]");
  S* sa = new S[3];
  delete []sa;
} ///:~

Here you can see the general form for
overloading new and delete. These use the Standard C library
functions malloc( ) and
free( ) for the allocators (which is
probably what the default new and delete use as well!). However,
they also print messages about what they are doing. Notice that
printf( ) and
puts( ) are used rather than
iostreams. This is because when an iostream
object is created (like the global cin,
cout, and cerr), it calls new to allocate memory. With
printf( ), you don't get into a deadlock because it
doesn't call new to initialize itself.
In main( ), objects of
built-in types are created to prove that the overloaded new and
delete are also called in that case. Then a single object of type
S is created, followed by an array of S. For the array,
you'll see from the number of bytes requested that extra memory is
allocated to store information (inside the array) about the number of objects it
holds. In all cases, the global overloaded versions of new and
delete are
used.
13-5-2 - 
Overloading new & delete for a
class
Although you don't have to
explicitly say static, when you overload new and delete for
a class, you're creating static member functions. As before, the
syntax is the same as overloading any other operator. When the compiler sees you
use new to create an object of your class, it chooses the member
operator new( ) over the global version. However, the global
versions of new and delete are used for all other types of objects
(unless they have their own new and delete).
In the following example, a primitive
storage allocation system
is
created for the class Framis. A chunk of memory is set aside in the
static data area at program start-up, and that memory is used to allocate space
for objects of type Framis. To determine which blocks have been
allocated, a simple array of bytes is used, one byte for each
block:
//: C13:Framis.cpp
// Local overloaded new & delete
#include <cstddef> // Size_t
#include <fstream>
#include <iostream>
#include <new>
using namespace std;
ofstream out("Framis.out");
 
class Framis {
  enum { sz = 10 };
  char c[sz]; // To take up space, not used
  static unsigned char pool[];
  static bool alloc_map[];
public:
  enum { psize = 100 };  // frami allowed
  Framis() { out << "Framis()\n"; }
  ~Framis() { out << "~Framis() ... "; }
  void* operator new(size_t) throw(bad_alloc);
  void operator delete(void*);
};
unsigned char Framis::pool[psize * sizeof(Framis)];
bool Framis::alloc_map[psize] = {false};
 
// Size is ignored -- assume a Framis object
void* 
Framis::operator new(size_t) throw(bad_alloc) {
  for(int i = 0; i < psize; i++)
    if(!alloc_map[i]) {
      out << "using block " << i << " ... ";
      alloc_map[i] = true; // Mark it used
      return pool + (i * sizeof(Framis));
    }
  out << "out of memory" << endl;
  throw bad_alloc();
}
 
void Framis::operator delete(void* m) {
  if(!m) return; // Check for null pointer
  // Assume it was created in the pool
  // Calculate which block number it is:
  unsigned long block = (unsigned long)m
    - (unsigned long)pool;
  block /= sizeof(Framis);
  out << "freeing block " << block << endl;
  // Mark it free:
  alloc_map[block] = false;
}
 
int main() {
  Framis* f[Framis::psize];
  try {
    for(int i = 0; i < Framis::psize; i++)
      f[i] = new Framis;
    new Framis; // Out of memory
  } catch(bad_alloc) {
    cerr << "Out of memory!" << endl;
  }
  delete f[10];
  f[10] = 0;
  // Use released memory:
  Framis* x = new Framis;
  delete x;
  for(int j = 0; j < Framis::psize; j++)
    delete f[j]; // Delete f[10] OK
} ///:~

The pool of memory for the Framis
heap is created by allocating an array of bytes large enough to hold
psize Framis objects. The allocation map is psize elements
long, so there's one bool for every block. All the values in the
allocation map are initialized to false using the aggregate
initialization trick of setting the first element so the compiler automatically
initializes all the rest to their normal default value (which is false,
in the case of bool).
The local operator new( )
has the same syntax as the global one. All it does is search through the
allocation map looking for a false value, then sets that location to
true to indicate it's been allocated and returns the address of the
corresponding memory block. If it can't find any memory, it issues a
message to the trace file and throws a bad_alloc
exception.
This is the first example of
exceptions that you've seen in this book. Since
detailed discussion of exceptions is delayed until Volume 2, this is a very
simple use of them. In operator new( ) there are two artifacts of
exception handling. First, the function argument list is followed by
throw(bad_alloc), which
tells the compiler and the reader that this function may throw an exception of
type bad_alloc. Second, if there's no more
memory the function actually does throw the exception in the statement throw
bad_alloc. When an exception is thrown, the function stops executing and
control is passed to an exception handler, which is expressed as a
catch clause.
In main( ), you see the other
part of the picture, which is the try-catch clause. The
try block is surrounded
by braces and contains all the code that may throw exceptions - in this
case, any call to new that involves Framis objects. Immediately
following the try block is one or more
catch clauses, each one
specifying the type of exception that they catch. In this case,
catch(bad_alloc) says that that bad_alloc exceptions will be
caught here. This particular catch clause is only executed when a
bad_alloc exception is thrown, and execution continues after the end of
the last catch clause in the group (there's only one here, but
there could be more).
In this example, it's OK to use
iostreams because the global operator new(
) and delete( ) are untouched.
The operator delete( )
assumes the Framis address was created in the pool. This is a fair
assumption, because the local operator new( ) will be called
whenever you create a single Framis object on the heap - but not an
array of them: global new is used for arrays. So the user might
accidentally have called operator delete( ) without using the
empty bracket syntax to indicate array destruction. This would cause a problem.
Also, the user might be deleting a pointer to an object created on the stack. If
you think these things could occur, you might want to add a line to make sure
the address is within the pool and on a correct boundary (you may also begin to
see the potential of overloaded new and
delete for finding memory leaks).
operator delete( )
calculates the block in the pool that this pointer represents, and then sets the
allocation map's flag for that block to false to indicate the block has
been released.
In main( ), enough
Framis objects are dynamically allocated to run out of memory; this
checks the out-of-memory behavior. Then one of the objects is freed, and another
one is created to show that the released memory is reused.
Because this allocation scheme is
specific to Framis objects, it's probably much faster than the
general-purpose memory allocation scheme used for the default new and
delete. However, you should note that it doesn't automatically work
if inheritance is used (inheritance is covered in Chapter
14).
13-5-3 - 
Overloading new & delete for
arrays
If you overload operator new and
delete for a class, those operators are called whenever you create an
object of that class. However, if you create an array of those class
objects, the global operator new( ) is called to allocate
enough storage for the array all at once, and the global operatordelete( ) is called to release that storage. You can control the
allocation of arrays of objects by overloading the special array versions of
operator new[ ] and operator delete[ ] for the class. Here's
an example that shows when the two different versions are
called:
//: C13:ArrayOperatorNew.cpp
// Operator new for arrays
#include <new> // Size_t definition
#include <fstream>
using namespace std;
ofstream trace("ArrayOperatorNew.out");
 
class Widget {
  enum { sz = 10 };
  int i[sz];
public:
  Widget() { trace << "*"; }
  ~Widget() { trace << "~"; }
  void* operator new(size_t sz) {
    trace << "Widget::new: "
         << sz << " bytes" << endl;
    return ::new char[sz];
  }
  void operator delete(void* p) {
    trace << "Widget::delete" << endl;
    ::delete []p;
  }
  void* operator new[](size_t sz) {
    trace << "Widget::new[]: "
         << sz << " bytes" << endl;
    return ::new char[sz];
  }
  void operator delete[](void* p) {
    trace << "Widget::delete[]" << endl;
    ::delete []p;
  }
};
 
int main() {
  trace << "new Widget" << endl;
  Widget* w = new Widget;
  trace << "\ndelete Widget" << endl;
  delete w;
  trace << "\nnew Widget[25]" << endl;
  Widget* wa = new Widget[25];
  trace << "\ndelete []Widget" << endl;
  delete []wa;
} ///:~

Here, the global versions of new
and delete are called so the effect is the same as having no overloaded
versions of new and delete except that trace information is added.
Of course, you can use any memory allocation scheme you want in the overloaded
new and delete.
You can see that the syntax of array
new and delete is the same as for the individual object versions
except for the addition of the brackets. In both cases you're handed the
size of the memory you must allocate. The size handed to the array version will
be the size of the entire array. It's worth keeping in mind that the
only thing the overloaded operator new( ) is
required to do is hand back a pointer to a large enough memory block. Although
you may perform initialization on that memory, normally that's the job of
the constructor that will automatically be called for your memory by the
compiler.
The constructor and destructor simply
print out characters so you can see when they've been called. Here's
what the trace file looks like for one compiler:
new Widget
Widget::new: 40 bytes
*
delete Widget
~Widget::delete
 
new Widget[25]
Widget::new[]: 1004 bytes
*************************
delete []Widget
~~~~~~~~~~~~~~~~~~~~~~~~~Widget::delete[]

Creating an individual object requires 40
bytes, as you might expect. (This machine uses four bytes for an int.)
The operator new( ) is called, then the constructor (indicated by
the *). In a complementary fashion, calling delete causes the
destructor to be called, then the operator delete(
).
When an array of Widget objects is
created, the array version of operator new( ) is used, as
promised. But notice that the size requested is four more bytes than expected.
This extra four bytes is where the system keeps information about the array, in
particular, the number of objects in the array. That way, when you
say
delete []Widget;

the brackets tell the compiler it's
an array of objects, so the compiler generates code to look for the number of
objects in the array and to call the destructor that many times. You can see
that, even though the array operator new( ) and operator
delete( ) are only called once for the entire array chunk, the
default constructor and destructor are called for each object in the
array.
13-5-4 - 
Constructor calls
Considering that
MyType* f = new MyType;

calls new to allocate a
MyType-sized piece of storage, then invokes the MyType constructor
on that storage, what happens if the storage allocation in new fails? The
constructor is not called in
that case, so although you still have an unsuccessfully created object, at least
you haven't invoked the constructor and handed it a zero this
pointer. Here's an example to prove it:
//: C13:NoMemory.cpp
// Constructor isn't called if new fails
#include <iostream>
#include <new> // bad_alloc definition
using namespace std;
 
class NoMemory {
public:
  NoMemory() {
    cout << "NoMemory::NoMemory()" << endl;
  }
  void* operator new(size_t sz) throw(bad_alloc){
    cout << "NoMemory::operator new" << endl;
    throw bad_alloc(); // "Out of memory"
  }
};
 
int main() {
  NoMemory* nm = 0;
  try {
    nm = new NoMemory;
  } catch(bad_alloc) {
    cerr << "Out of memory exception" << endl;
  }
  cout << "nm = " << nm << endl;
} ///:~

When the program runs, it does not print
the constructor message, only the message from operator new( ) and
the message in the exception handler. Because new never returns, the
constructor is never called so its message is not printed.
It's important that nm be
initialized to zero because the new expression never completes, and the
pointer should be zero to make sure you don't misuse it. However, you
should actually do more in the exception handler than just print out a message
and continue on as if the object had been successfully created. Ideally, you
will do something that will cause the program to recover from the problem, or at
the least exit after logging an error.
In earlier versions of C++ it was
standard practice to return zero from new if storage allocation failed.
That would prevent construction from occurring. However, if you try to return
zero from new with a Standard-conforming compiler, it should tell you
that you ought to throw bad_alloc
instead.
13-5-5 - 
placement new & delete
There are two other, less common, uses
for overloading operator new(
).
		You may want to place an
object in a specific location in memory. This is especially important with
hardware-oriented embedded systems where an object may be synonymous with a
particular piece of
hardware.
		You may
want to be able to choose from different allocators when calling
new.

Both of these
situations are solved with the same mechanism: The overloaded operator
new( ) can take more than one argument. As you've seen before,
the first argument is always the size of the object, which is secretly
calculated and passed by the compiler. But the other arguments can be anything
you want - the address you want the object placed at, a reference to a
memory allocation function or object, or anything else that is convenient for
you.
The way that you pass the extra arguments
to operator new( ) during a call may seem slightly curious at
first. You put the argument list (without the size_t argument,
which is handled by the compiler) after the keyword new and before the
class name of the object you're creating. For example,
X* xp = new(a) X;

will pass a as the second argument
to operator new( ). Of course, this can work only if such an
operator new( ) has been declared.
Here's an example showing how you
can place an object at a particular location:
//: C13:PlacementOperatorNew.cpp
// Placement with operator new()
#include <cstddef> // Size_t
#include <iostream>
using namespace std;
 
class X {
  int i;
public:
  X(int ii = 0) : i(ii) {
    cout << "this = " << this << endl;
  }
  ~X() {
    cout << "X::~X(): " << this << endl;
  }
  void* operator new(size_t, void* loc) {
    return loc;
  }
};
 
int main() {
  int l[10];
  cout << "l = " << l << endl;
  X* xp = new(l) X(47); // X at location l
  xp->X::~X(); // Explicit destructor call
  // ONLY use with placement!
} ///:~

Notice that operator new only
returns the pointer that's passed to it. Thus, the caller decides where
the object is going to sit, and the constructor is called for that memory as
part of the new-expression.
Although this example shows only one
additional argument, there's nothing to prevent you from adding more if
you need them for other purposes.
A dilemma occurs when you want to destroy
the object. There's only one version of operator delete, so
there's no way to say, “Use my special deallocator for this
object.” You want to call the destructor, but you don't want the
memory to be released by the dynamic memory mechanism because it wasn't
allocated on the heap.
The answer is a very special syntax. You
can explicitly call the destructor, as in
xp->X::~X(); // Explicit destructor call

A stern warning
is in order here. Some people see this as a way to destroy objects at some time
before the end of the scope, rather than either adjusting the scope or (more
correctly) using dynamic object creation if they want the object's
lifetime to be determined at runtime. You will have serious problems if you call
the destructor this way for an ordinary object created on the stack because the
destructor will be called again at the end of the scope. If you call the
destructor this way for an object that was created on the heap, the destructor
will execute, but the memory won't be released, which probably isn't
what you want. The only reason that the destructor can be called explicitly this
way is to support the placement syntax for operator new.
There's also a placement
operator delete that is only called if a constructor for a placement
new expression throws an exception (so that the memory is automatically
cleaned up during the exception). The placement operator delete has an
argument list that corresponds to the placement operator new that is
called before the constructor throws the exception. This topic will be explored
in the exception handling chapter in Volume
2.
13-6 - 
Summary
It's convenient and optimally
efficient to create automatic objects on the stack, but to solve the general
programming problem you must be able to create and destroy objects at any time
during a program's execution, particularly to respond to information from
outside the program. Although C's dynamic memory allocation will get
storage from the heap, it doesn't provide the ease of use and guaranteed
construction necessary in C++. By bringing dynamic object creation into the core
of the language with new and delete, you can create objects on the
heap as easily as making them on the stack. In addition, you get a great deal of
flexibility. You can change the behavior of new and delete if they
don't suit your needs, particularly if they aren't efficient enough.
Also, you can modify what happens when the heap runs out of
storage.
13-7 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
www.BruceEckel.com.
		Create a class Counted
that contains an int id and a static int count. The
default constructor should
begin:
Counted( ) : id(count++) {. It
should also print its id and that it's being created. The
destructor should print that it's being destroyed and its id. Test
your class.
		Prove to
yourself that new and delete always call the constructors and
destructors by creating an object of class Counted (from Exercise 1) with
new and destroying it with delete. Also create and destroy an
array of these objects on the
heap.
		Create a
PStash object and fill it with new objects from Exercise 1.
Observe what happens when this PStash object goes out of scope and its
destructor is
called.
		Create a
vector< Counted*> and fill it with pointers to new Counted
objects (from Exercise 1). Move through the vector and print the
Counted objects, then move through again and delete each
one.
		Repeat Exercise
4, but add a member function f( ) to Counted that prints a
message. Move through the vector and call f( ) for each
object.
		Repeat
Exercise 5 using a
PStash.
		Repeat
Exercise 5 using Stack4.h from Chapter
9.
		Dynamically
create an array of objects of class Counted (from Exercise 1). Call
delete for the resulting pointer, without the square brackets.
Explain the
results.
		Create an
object of class Counted (from Exercise 1) using new, cast the
resulting pointer to a void*, and delete that. Explain the
results.
		Execute
NewHandler.cpp on your machine to see the resulting count. Calculate the
amount of free store available for your
program.
		Create a
class with an overloaded operator new and delete, both the
single-object versions and the array versions. Demonstrate that both versions
work.
		Devise a test
for Framis.cpp to show yourself approximately how much faster the custom
new and delete run than the global new and
delete.
		Modify
NoMemory.cpp so that it contains an array of int and so that it
actually allocates memory instead of throwing bad_alloc. In
main( ), set up a while loop like the one in
NewHandler.cpp to run out of memory and see what happens if your
operator new does not test to see if the memory is successfully
allocated. Then add the check to your operator new and throw
bad_alloc.
		Create
a class with a placement new with a second argument of type
string. The class should contain a static vector<string>
where the second new argument is stored. The placement new
should allocate storage as normal. In main( ), make calls to
your placement new with string arguments that describe the calls
(you may want to use the preprocessor's __FILE__ and
__LINE__
macros).
		Modify
ArrayOperatorNew.cpp by adding a static vector<Widget*> that
adds each Widget address that is allocated in operator new(
) and removes it when it is released via operator delete(
). (You may need to look up information about vector in your
Standard C++ Library documentation or in the 2nd volume of this book,
available at the Web site.) Create a second class called MemoryChecker
that has a destructor that prints out the number of Widget pointers
in your vector. Create a program with a single global instance of
MemoryChecker and in main( ), dynamically allocate and
destroy several objects and arrays of Widget. Show that
MemoryChecker reveals memory
leaks.


14 - Inheritance & Composition
One of the most compelling
features about C++ is 
code
reuse. But to be revolutionary,
you need to be 
able to do a lot more than
copy code and change it.
That's the C approach, and it
hasn't worked very well. As with most everything in C++, the solution
revolves around the class. You reuse code by creating new classes, but instead
of creating them from scratch, you use existing classes that someone else has
built and debugged.
The trick is to use the classes without
soiling the existing code. In this chapter you'll see two ways to
accomplish this. The first is quite straightforward: You simply create objects
of your existing class inside the new class. This is called composition
because the new class is composed of objects of existing
classes.
The second approach is subtler. You
create a new class as a type of an existing class. You literally take the
form of the existing class and add code to it, without modifying the existing
class. This magical act is called inheritance,
and most of the work is done by the compiler. Inheritance is one of the
cornerstones of object-oriented programming and has additional implications that
will be explored in Chapter 15.
It turns out that much of the syntax and
behavior are similar for both composition and inheritance (which makes sense;
they are both ways of making new types from existing types). In this chapter,
you'll learn about these code reuse
mechanisms.
14-1 - 
Composition syntax
Actually, you've been using
composition all along to create classes. You've just been composing
classes primarily with built-in types (and sometimes strings). It turns
out to be almost as easy to use composition with user-defined
types.
Consider a class that is valuable for
some reason:
//: C14:Useful.h
// A class to reuse
#ifndef USEFUL_H
#define USEFUL_H
 
class X {
  int i;
public:
  X() { i = 0; }
  void set(int ii) { i = ii; }
  int read() const { return i; }
  int permute() { return i = i * 47; }
};
#endif // USEFUL_H ///:~

The data members are private in
this class, so it's completely safe to embed an object of type X as
a public object in a new class, which makes the interface
straightforward:
//: C14:Composition.cpp
// Reuse code with composition
#include "Useful.h"
 
class Y {
  int i;
public:
  X x; // Embedded object
  Y() { i = 0; }
  void f(int ii) { i = ii; }
  int g() const { return i; }
};
 
int main() {
  Y y;
  y.f(47);
  y.x.set(37); // Access the embedded object
} ///:~

Accessing the member functions of the
embedded object (referred to as a
subobject) simply requires another member
selection.
It's more common to make the
embedded objects private, so they become part of the underlying
implementation (which means you can change the implementation if you want). The
public interface functions for your new class then involve the use of the
embedded object, but they don't necessarily mimic the object's
interface:
//: C14:Composition2.cpp
// Private embedded objects
#include "Useful.h"
 
class Y {
  int i;
  X x; // Embedded object
public:
  Y() { i = 0; }
  void f(int ii) { i = ii; x.set(ii); }
  int g() const { return i * x.read(); }
  void permute() { x.permute(); }
};
 
int main() {
  Y y;
  y.f(47);
  y.permute();
} ///:~

Here, the permute( ) function
is carried through to the new class interface, but the other member functions of
X are used within the members of
Y.
14-2 - 
Inheritance syntax
The syntax for composition is obvious,
but to perform inheritance there's a new and different
form.
When you inherit, you are saying,
“This new class is like that old class.” You state this in code by
giving the name of the class as usual, but before the opening brace of the class
body, you put a colon and the name of the base class (or base
classes, separated by commas, for
multiple
inheritance). When you do this, you automatically get
all the data members and member functions in the base class. Here's an
example:
//: C14:Inheritance.cpp
// Simple inheritance
#include "Useful.h"
#include <iostream>
using namespace std;
 
class Y : public X {
  int i; // Different from X's i
public:
  Y() { i = 0; }
  int change() {
    i = permute(); // Different name call
    return i;
  }
  void set(int ii) {
    i = ii;
    X::set(ii); // Same-name function call
  }
};
 
int main() {
  cout << "sizeof(X) = " << sizeof(X) << endl;
  cout << "sizeof(Y) = "
       << sizeof(Y) << endl;
  Y D;
  D.change();
  // X function interface comes through:
  D.read();
  D.permute();
  // Redefined functions hide base versions:
  D.set(12);
} ///:~

You can see Y being inherited from
X, which means that Y will contain all the data elements in
X and all the member functions in X. In fact, Y contains a
subobject of X just as if you had created a member object of X
inside Y instead of inheriting from X. Both member objects and
base class storage are referred to as
subobjects.
All the private elements of
X are still private in Y; that is, just because Y
inherits from X doesn't mean Y can break the protection
mechanism. The private elements of X are still there, they take up
space - you just can't access them directly.
In main( ) you can see that
Y'sdata elements are combined with X's because
the sizeof(Y) is twice as
big as sizeof(X).
You'll notice that the base class
is preceded by public.
During inheritance, everything defaults to private. If the base class
were not preceded by public, it would mean that all of the public
members of the base class would be private in the derived class. This is
almost never what you
want(51);
the desired result is to keep all the public members of the base class
public in the derived class. You do this by using the public
keyword during inheritance.
In change( ), the base-class
permute( ) function is called. The derived class has direct access
to all the public base-class functions.
The set( ) function in the
derived class redefines
the set( ) function
in the base class. That is, if you call the functions read( ) and
permute( ) for an object of type Y, you'll get the
base-class versions of those functions (you can see this happen inside
main( )). But if you call set( ) for a Y object,
you get the redefined version. This means that if you don't like the
version of a function you get during inheritance, you can change what it does.
(You can also add completely new functions like
change( ).)
However, when you're redefining a
function, you may still want to call the base-class version. If, inside
set( ), you simply call set( ) you'll get the
local version of the function - a recursive function call. To call the
base-class version, you must explicitly name the base class using the scope
resolution
operator.
14-3 - 
The constructor initializer list
You've seen how important it is in
C++ to guarantee proper initialization, and it's no different during
composition and inheritance. When an object is created, the compiler guarantees
that constructors for all of its subobjects are called. In the examples so far,
all of the subobjects have default constructors, and that's what the
compiler automatically calls. But what happens if your subobjects
don't have default constructors, or if you want to
change a default argument in a constructor? This is a problem because the new
class constructor doesn't have permission to access the private
data elements of the subobject, so it can't initialize them
directly.
The solution is simple: Call the
constructor for the subobject. C++ provides a special syntax for this, the
constructor initializer
list.
The form of the constructor initializer list echoes the act of inheritance. With
inheritance, you put the base classes after a colon and before the opening brace
of the class body. In the constructor initializer list, you put the calls to
subobject constructors after the constructor argument list and a colon, but
before the opening brace of the function body. For a class MyType,
inherited from Bar, this might look like this:
MyType::MyType(int i) : Bar(i) { // ...

if Bar has a constructor that
takes a single int
argument.
14-3-1 - 
Member object
initialization
It turns out that you use this very same
syntax for member object initialization when using composition. For composition,
you give the names of the objects instead of the class names. If you have more
than one constructor call in the initializer list, you separate the calls with
commas:
MyType2::MyType2(int i) : Bar(i), m(i+1) { // ...

This is the beginning of a constructor
for class MyType2, which is inherited from Bar and contains a
member object called m. Note that while you can see the type of the base
class in the constructor initializer list, you only see the member object
identifier.
14-3-2 - 
Built-in types in the initializer
list
The constructor initializer list allows
you to explicitly call the constructors for member objects. In fact,
there's no other way to call those constructors. The idea is that the
constructors are all called before you get into the body of the new
class's constructor. That way, any calls you make to member functions of
subobjects will always go to initialized objects. There's no way to get to
the opening brace of the constructor without some constructor being
called for all the member objects and base-class objects, even if the compiler
must make a hidden call to a default constructor. This is a further enforcement
of the C++ guarantee that no object (or part of an object) can get out of the
starting gate without its constructor being called.
This idea that all of the member objects
are initialized by the time the opening brace of the constructor is reached is a
convenient programming aid as well. Once you hit the opening brace, you can
assume all subobjects are properly initialized and focus on specific tasks you
want to accomplish in the constructor. However, there's a hitch: What
about member objects of built-in types, which don't have
constructors?
To make the syntax consistent, you are
allowed to treat built-in types as if they have a single constructor, which
takes a single argument: a variable of the same type as the variable
you're initializing. Thus, you can say
//: C14:PseudoConstructor.cpp
class X {
  int i;
  float f;
  char c;
  char* s;
public:
  X() : i(7), f(1.4), c('x'), s("howdy") {}
};
 
int main() {
  X x;
  int i(100);  // Applied to ordinary definition
  int* ip = new int(47);
} ///:~

The action of these
“pseudo-constructor calls” is to perform a simple assignment.
It's a convenient technique and a good coding style, so you'll see
it used often.
It's even possible to use the
pseudo-constructor syntax when creating a variable of a built-in type outside of
a class:
int i(100);
int* ip = new int(47);

This makes built-in types act a little
bit more like objects. Remember, though, that these are not real constructors.
In particular, if you don't explicitly make a pseudo-constructor call, no
initialization is
performed.
14-4 - 
Combining composition &
inheritance
Of course, you can use composition &
inheritance together. The following example shows the creation of a more complex
class using both of them.
//: C14:Combined.cpp
// Inheritance & composition
 
class A {
  int i;
public:
  A(int ii) : i(ii) {}
  ~A() {}
  void f() const {}
};
 
class B {
  int i;
public:
  B(int ii) : i(ii) {}
  ~B() {}
  void f() const {}
};
 
class C : public B {
  A a;
public:
  C(int ii) : B(ii), a(ii) {}
  ~C() {} // Calls ~A() and ~B()
  void f() const {  // Redefinition
    a.f();
    B::f();
  }
};
 
int main() {
  C c(47);
} ///:~

C inherits from B and has a
member object (“is composed of”) of type A. You can see the
constructor initializer list contains calls to both the base-class constructor
and the member-object constructor.
The function C::f( )
redefines B::f( ), which it inherits, and also calls the base-class
version. In addition, it calls a.f( ). Notice that the only time you
can talk about redefinition of functions is during inheritance; with a member
object you can only manipulate the public interface of the object, not redefine
it. In addition, calling f( ) for an object of class C would
not call a.f( ) if C::f( ) had not been defined, whereas
it would call B::f( ).

Automatic destructor
calls
Although you are often required to make
explicit constructor calls in the initializer list, you never need to make
explicit destructor calls because there's only one destructor for any
class, and it doesn't take any arguments. However, the compiler still
ensures that all destructors are called, and that means all of the destructors
in the entire hierarchy, starting with the most-derived destructor and working
back to the root.
It's worth emphasizing that
constructors and destructors are quite unusual in that every one in the
hierarchy is called, whereas with a normal member function only that function is
called, but not any of the base-class versions. If you also want to call the
base-class version of a normal member function that you're overriding, you
must do it
explicitly.
14-4-1 - 
Order of constructor & destructor calls
It's interesting to know the order
of constructor and destructor calls
when an
object has many subobjects. The following example shows exactly how it
works:
//: C14:Order.cpp
// Constructor/destructor order
#include <fstream>
using namespace std;
ofstream out("order.out");
 
#define CLASS(ID) class ID { \
public: \
  ID(int) { out << #ID " constructor\n"; } \
  ~ID() { out << #ID " destructor\n"; } \
};
 
CLASS(Base1);
CLASS(Member1);
CLASS(Member2);
CLASS(Member3);
CLASS(Member4);
 
class Derived1 : public Base1 {
  Member1 m1;
  Member2 m2;
public:
  Derived1(int) : m2(1), m1(2), Base1(3) {
    out << "Derived1 constructor\n";
  }
  ~Derived1() {
    out << "Derived1 destructor\n";
  }
};
 
class Derived2 : public Derived1 {
  Member3 m3;
  Member4 m4;
public:
  Derived2() : m3(1), Derived1(2), m4(3) {
    out << "Derived2 constructor\n";
  }
  ~Derived2() {
    out << "Derived2 destructor\n";
  }
};
 
int main() {
  Derived2 d2;
} ///:~

First, an
ofstream object is created to send all the output
to a file. Then, to save some typing and demonstrate a macro technique that will
be replaced by a much improved technique in Chapter 16, a
macro is created to build some
of the classes, which are then used in inheritance and composition. Each of the
constructors and destructors report themselves to the trace file. Note that the
constructors are not default constructors; they each have an int
argument. The argument itself has no identifier; its only reason for existence
is to force you to explicitly call the constructors in the initializer list.
(Eliminating the identifier prevents compiler warning
messages.)
The output of this program
is
Base1 constructor
Member1 constructor
Member2 constructor
Derived1 constructor
Member3 constructor
Member4 constructor
Derived2 constructor
Derived2 destructor
Member4 destructor
Member3 destructor
Derived1 destructor
Member2 destructor
Member1 destructor
Base1 destructor

You can see that construction starts at
the very root of the class hierarchy, and that at each level the base class
constructor is called first, followed by the member object constructors. The
destructors are called in exactly the reverse order of the constructors -
this is important because of potential dependencies (in the derived-class
constructor or destructor, you must be able to assume that the base-class
subobject is still available for use, and has already been constructed -
or not destroyed yet).
It's also interesting that the
order of constructor calls for member objects is completely unaffected by the
order of the calls in the constructor initializer list. The order is determined
by the order that the member objects are declared in the class. If you could
change the order of constructor calls via the constructor initializer list, you
could have two different call sequences in two different constructors, but the
poor destructor wouldn't know how to properly reverse the order of the
calls for destruction, and you could end up with a dependency
problem.
14-5 - 
Name hiding
If you inherit a class and provide a new
definition for one of its member functions, there are two possibilities. The
first is that you provide the exact signature and return type in the derived
class definition as in the base class definition. This is called
redefining for ordinary member functions and
overriding when the base class member function is
a virtual function
(virtual functions are the normal case, and will be covered in detail in
Chapter 15). But what happens if you change the member function argument list or
return type in the derived class? Here's an example:
//: C14:NameHiding.cpp
// Hiding overloaded names during inheritance
#include <iostream>
#include <string>
using namespace std;
 
class Base {
public:
  int f() const { 
    cout << "Base::f()\n"; 
    return 1; 
  }
  int f(string) const { return 1; }
  void g() {}
};
 
class Derived1 : public Base {
public:
  void g() const {}
};
 
class Derived2 : public Base {
public:
  // Redefinition:
  int f() const { 
    cout << "Derived2::f()\n"; 
    return 2;
  }
};
 
class Derived3 : public Base {
public:
  // Change return type:
  void f() const { cout << "Derived3::f()\n"; }
};
 
class Derived4 : public Base {
public:
  // Change argument list:
  int f(int) const { 
    cout << "Derived4::f()\n"; 
    return 4; 
  }
};
 
int main() {
  string s("hello");
  Derived1 d1;
  int x = d1.f();
  d1.f(s);
  Derived2 d2;
  x = d2.f();
//!  d2.f(s); // string version hidden
  Derived3 d3;
//!  x = d3.f(); // return int version hidden
  Derived4 d4;
//!  x = d4.f(); // f() version hidden
  x = d4.f(1);
} ///:~

In Base you see an overloaded
function f( ), and Derived1 doesn't make any changes to
f( ) but it does redefine g( ). In main( ),
you can see that both overloaded versions of f( ) are available in
Derived1. However, Derived2 redefines one overloaded version of
f( ) but not the other, and the result is that the second overloaded
form is unavailable. In Derived3, changing the return type hides both the
base class versions, and Derived4 shows that changing the argument list
also hides both the base class versions. In general, we can say that anytime you
redefine an overloaded function name from the base class, all the other versions
are automatically hidden in the new class. In Chapter 15, you'll see that
the addition of the virtual keyword affects function overloading a bit
more.
If you change the interface of the base
class by modifying the
signature
and/or
return
type of a member function from the base class, then you're using the class
in a different way than inheritance is normally intended to support. It
doesn't necessarily mean you're doing it wrong, it's just that
the ultimate goal of inheritance is to support
polymorphism, and if you change the function
signature or return type then you are actually changing the interface of the
base class. If this is what you have intended to do then you are using
inheritance primarily to reuse code, and not to maintain the common interface of
the base class (which is an essential aspect of polymorphism). In general, when
you use inheritance this way it means you're taking a general-purpose
class and specializing it for a particular need - which is usually, but
not always, considered the realm of
composition.
For example, consider the Stack
class from Chapter 9. One of the problems with that class is that you had to
perform a cast every time you fetched a pointer from the container. This is not
only tedious, it's unsafe - you could cast the pointer to anything
you want.
An approach that seems better at first
glance is to specialize the general Stack class using inheritance.
Here's an example that uses the class from Chapter 9:

//: C14:InheritStack.cpp
// Specializing the Stack class
#include "../C09/Stack4.h"
#include "../require.h"
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
 
class StringStack : public Stack {
public:
  void push(string* str) {
    Stack::push(str);
  }
  string* peek() const {
    return (string*)Stack::peek();
  }
  string* pop() {
    return (string*)Stack::pop();
  }
  ~StringStack() {
    string* top = pop();
    while(top) {
      delete top;
      top = pop();
    }
  }
};
 
int main() {
  ifstream in("InheritStack.cpp");
  assure(in, "InheritStack.cpp");
  string line;
  StringStack textlines;
  while(getline(in, line))
    textlines.push(new string(line));
  string* s;
  while((s = textlines.pop()) != 0) { // No cast!
    cout << *s << endl;
    delete s;
  }
} ///:~

Since all of the member functions in
Stack4.h are inlines, nothing needs to be linked.
StringStack specializes
Stack so that push( ) will accept only String
pointers. Before, Stack would accept void pointers, so the user
had no type checking to make sure the proper pointers were inserted. In
addition, peek( ) and pop( ) now return String
pointers instead of void pointers, so no cast is necessary to use the
pointer.
Amazingly enough, this extra
type-checking safety is free in push( ), peek( ), and
pop( )! The compiler is being given extra type information that it
uses at compile-time, but the functions are inlined and no extra code is
generated.
Name hiding comes into play here because,
in particular, the push( ) function has a different signature: the
argument list is different. If you had two versions of push( ) in
the same class, that would be overloading, but in this case overloading is
not what we want because that would still allow you to pass any kind of
pointer into push( ) as a void*. Fortunately, C++ hides the
push(void*) version in the base class in favor of the new version
that's defined in the derived class, and therefore it only allows us to
push( ) string pointers onto the StringStack.

Because we can now guarantee that we know
exactly what kind of objects are in the container, the destructor works
correctly and the ownership problem is solved - or
at least, one approach to the ownership problem. Here, if you
push( ) a string pointer onto the StringStack, then
(according to the semantics of the StringStack)you're also
passing ownership of that pointer to the StringStack. If you
pop( ) the pointer, you not only get the pointer, but you also get
ownership of that pointer. Any pointers that are left on the StringStack
when its destructor is called are then deleted by that destructor. And since
these are always string pointers and the delete statement is
working on string pointers instead of void pointers, the proper
destruction happens and everything works correctly.
There is a drawback: this class works
only for string pointers. If you want a Stack that works
with some other kind of object, you must write a new version of the class so
that it works only with your new kind of object. This rapidly becomes tedious,
and is finally solved using templates, as you will see in Chapter
16.
We can make an additional observation
about this example: it changes the interface of the Stack in the process
of inheritance. If the interface is different, then a StringStack really
isn't a Stack, and you will never be able to correctly use a
StringStack as a Stack. This makes the use of inheritance
questionable here; if you're not creating a StringStack that
is-a type of Stack, then why are you
inheriting? A more appropriate version of StringStack will be shown later
in this
chapter.
14-6 - 
Functions that don't automatically inherit
Not all functions are automatically
inherited from the base class into the derived class. Constructors and
destructors deal with the creation and destruction of an object, and they can
know what to do with the aspects of the object only for their particular class,
so all the constructors and destructors
in the hierarchy below them must be called. Thus,
constructors and destructors don't inherit and must be created specially
for each derived class.
In addition, the operator=
doesn't inherit because it performs a
constructor-like activity. That is, just because you know how to assign all the
members of an object on the left-hand side of the = from an object on the
right-hand side doesn't mean that assignment will still have the same
meaning after inheritance.
In lieu of inheritance, these functions
are synthesized by the compiler if you don't
create them yourself. (With constructors, you can't create any
constructors in order for the compiler to synthesize the default constructor
and the copy-constructor.) This was briefly described in Chapter 6. The
synthesized constructors use
memberwise
initialization and the synthesized operator= uses
memberwise
assignment. Here's an example of the functions that are synthesized by the
compiler:
//: C14:SynthesizedFunctions.cpp
// Functions that are synthesized by the compiler
#include <iostream>
using namespace std;
 
class GameBoard {
public:
  GameBoard() { cout << "GameBoard()\n"; }
  GameBoard(const GameBoard&) { 
    cout << "GameBoard(const GameBoard&)\n"; 
  }
  GameBoard& operator=(const GameBoard&) {
    cout << "GameBoard::operator=()\n";
    return *this;
  }
  ~GameBoard() { cout << "~GameBoard()\n"; }
};
 
class Game {
  GameBoard gb; // Composition
public:
  // Default GameBoard constructor called:
  Game() { cout << "Game()\n"; }
  // You must explicitly call the GameBoard
  // copy-constructor or the default constructor
  // is automatically called instead:
  Game(const Game& g) : gb(g.gb) { 
    cout << "Game(const Game&)\n"; 
  }
  Game(int) { cout << "Game(int)\n"; }
  Game& operator=(const Game& g) {
    // You must explicitly call the GameBoard
    // assignment operator or no assignment at 
    // all happens for gb!
    gb = g.gb;
    cout << "Game::operator=()\n";
    return *this;
  }
  class Other {}; // Nested class
  // Automatic type conversion:
  operator Other() const {
    cout << "Game::operator Other()\n";
    return Other();
  }
  ~Game() { cout << "~Game()\n"; }
};
 
class Chess : public Game {};
 
void f(Game::Other) {}
 
class Checkers : public Game {
public:
  // Default base-class constructor called:
  Checkers() { cout << "Checkers()\n"; }
  // You must explicitly call the base-class
  // copy constructor or the default constructor
  // will be automatically called instead:
  Checkers(const Checkers& c) : Game(c) {
    cout << "Checkers(const Checkers& c)\n";
  }
  Checkers& operator=(const Checkers& c) {
    // You must explicitly call the base-class
    // version of operator=() or no base-class
    // assignment will happen:
    Game::operator=(c);
    cout << "Checkers::operator=()\n";
    return *this;
  }
};
 
int main() {
  Chess d1;  // Default constructor
  Chess d2(d1); // Copy-constructor
//! Chess d3(1); // Error: no int constructor
  d1 = d2; // Operator= synthesized
  f(d1); // Type-conversion IS inherited
  Game::Other go;
//!  d1 = go; // Operator= not synthesized 
           // for differing types
  Checkers c1, c2(c1);
  c1 = c2;
} ///:~

The constructors and the operator=
for GameBoard and Game announce themselves so you can see when
they're used by the compiler. In addition, the operator
Other( ) performs automatic type conversion from a Game object
to an object of the nested class Other. The class Chess simply
inherits from Game and creates no functions (to see how the compiler
responds). The function f( ) takes an Other object to test
the automatic type conversion function.
In main( ), the synthesized
default constructor and copy-constructor for the derived class Chess are
called. The Game versions of these constructors are called as part of the
constructor-call hierarchy. Even though it looks like inheritance, new
constructors are actually synthesized by the compiler. As you might expect, no
constructors with arguments are automatically created because that's too
much for the compiler to intuit.
The operator= is also synthesized
as a new function in Chess using memberwise assignment (thus, the
base-class version is called) because that function was not explicitly written
in the new class. And of course the destructor was automatically synthesized by
the compiler.
Because of all these rules about
rewriting functions that handle object creation, it may seem a little strange at
first that the automatic type conversion operator is inherited. But
it's not too unreasonable - if there are enough pieces in
Game to make an Other object, those pieces are still there in
anything derived from Game and the type conversion operator is still
valid (even though you may in fact want to redefine it).
operator= is synthesized
only for assigning objects of the same type. If you want to assign one
type to another you must always write that operator=
yourself.
If you look more closely at Game,
you'll see that the copy-constructor and assignment operators have
explicit calls to the member object copy-constructor and assignment operator.
You will normally want to do this because otherwise, in the case of the
copy-constructor, the default member object constructor will be used instead,
and in the case of the assignment operator, no assignment at all will be
done for the member objects!
Lastly, look at Checkers, which
explicitly writes out the default constructor, copy-constructor, and assignment
operators. In the case of the default constructor, the default base-class
constructor is automatically called, and that's typically what you want.
But, and this is an important point, as soon as you decide to write your own
copy-constructor and assignment operator, the compiler assumes that you know
what you're doing and does not automatically call the base-class
versions, as it does in the synthesized functions. If you want the base class
versions called (and you typically do) then you must explicitly call them
yourself. In the Checkers copy-constructor, this call appears in the
constructor initializer list:
Checkers(const Checkers& c) : Game(c) {

In the Checkers assignment
operator, the base class call is the first line in the function
body:
Game::operator=(c);

These calls should be part of the
canonical form that you use whenever you inherit a
class.
14-6-1 - 
Inheritance and static member
functions
static member functions act the
same as non-static member functions:
		They inherit into the
derived class.
		If
you redefine a static member, all the other overloaded functions in the base
class are hidden.
		If
you change the signature of a function in the base class, all the base class
versions with that function name are hidden (this is really a variation of the
previous point).

However,
static member functions cannot be virtual (a topic covered
thoroughly in Chapter 15).
14-7 - 
Choosing composition vs.
inheritance
Both composition and inheritance place
subobjects
inside your new class. Both use the constructor initializer list to construct
these subobjects. You may now be wondering what the difference is between the
two, and when to choose one over the other.
Composition is generally used when you
want the features of an existing class inside your new class, but not its
interface. That is, you embed an object to implement features of your new class,
but the user of your new class sees the interface you've defined rather
than the interface from the original class. To do this, you follow the typical
path of embedding private objects of existing classes inside your new
class.
Occasionally, however, it makes sense to
allow the class user to directly access the composition of your new class, that
is, to make the member objects public. The member objects use access
control themselves, so this is a safe thing to do and when the user knows
you're assembling a bunch of parts, it makes the interface easier to
understand. A Car class is a good example:
//: C14:Car.cpp
// Public composition
 
class Engine {
public:
  void start() const {}
  void rev() const {}
  void stop() const {}
};
 
class Wheel {
public:
  void inflate(int psi) const {}
};
 
class Window {
public:
  void rollup() const {}
  void rolldown() const {}
};
 
class Door {
public:
  Window window;
  void open() const {}
  void close() const {}
};
 
class Car {
public:
  Engine engine;
  Wheel wheel[4];
  Door left, right; // 2-door
};
 
int main() {
  Car car;
  car.left.window.rollup();
  car.wheel[0].inflate(72);
} ///:~

Because the composition of a Car
is part of the analysis of the problem (and not simply part of the underlying
design), making the members public assists the client programmer's
understanding of how to use the class and requires less code complexity for the
creator of the class.
With a little thought, you'll also
see that it would make no sense to compose a Car using a
“vehicle” object - a car doesn't contain a vehicle, it
is a vehicle. The is-a relationship is expressed with inheritance,
and the has-a relationship is expressed with
composition.
14-7-1 - 
Subtyping
Now suppose you want to create a type of
ifstream object that not only opens a file but
also keeps track of the name of the file. You can use composition and embed both
an ifstream and a string into the new class:
//: C14:FName1.cpp
// An fstream with a file name
#include "../require.h"
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
 
class FName1 {
  ifstream file;
  string fileName;
  bool named;
public:
  FName1() : named(false) {}
  FName1(const string& fname) 
    : fileName(fname), file(fname.c_str()) {
    assure(file, fileName);
    named = true;
  }
  string name() const { return fileName; }
  void name(const string& newName) {
    if(named) return; // Don't overwrite
    fileName = newName;
    named = true;
  }
  operator ifstream&() { return file; }
};
 
int main() {
  FName1 file("FName1.cpp");
  cout << file.name() << endl;
  // Error: close() not a member:
//!  file.close();
} ///:~

There's a problem here, however. An
attempt is made to allow the use of the FName1 object anywhere an
ifstream object is used by including an automatic type conversion
operator from FName1 to an ifstream&. But in main, the
line
file.close();

will not compile because automatic type
conversion happens only in function calls, not during member selection. So this
approach won't work.
A second approach is to add the
definition of close( ) to FName1:
void close() { file.close(); }

This will work if there are only a few
functions you want to bring through from the ifstream class. In that case
you're only using part of the class, and composition
is appropriate.
But what if you want everything in the
class to come through? This is called subtyping because you're
making a new type from an existing type, and you want your new type to have
exactly the same interface as the existing type (plus any other member functions
you want to add), so you can use it everywhere you'd use the existing
type. This is where inheritance is essential. You can see that subtyping solves
the problem in the preceding example perfectly:
//: C14:FName2.cpp
// Subtyping solves the problem
#include "../require.h"
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
 
class FName2 : public ifstream {
  string fileName;
  bool named;
public:
  FName2() : named(false) {}
  FName2(const string& fname)
    : ifstream(fname.c_str()), fileName(fname) {
    assure(*this, fileName);
    named = true;
  }
  string name() const { return fileName; }
  void name(const string& newName) {
    if(named) return; // Don't overwrite
    fileName = newName;
    named = true;
  }
};
 
int main() {
  FName2 file("FName2.cpp");
  assure(file, "FName2.cpp");
  cout << "name: " << file.name() << endl;
  string s;
  getline(file, s); // These work too!
  file.seekg(-200, ios::end);
  file.close();
} ///:~

Now any member function available for an
ifstream object is available for an FName2 object. You can also
see that non-member functions like getline( ) that expect an
ifstream can also work with an FName2.That's because
an FName2 is a type of ifstream; it doesn't simply
contain one. This is a very important issue that will be explored at the end of
this chapter and in the next
one.
14-7-2 - 
private inheritance
You can inherit a base class privately by
leaving off the public in the base-class list, or by explicitly saying
private (probably a better policy because it is clear to the user that
you mean it). When you inherit privately, you're “implementing in
terms of;” that is, you're creating a new class that has all of the
data and functionality of the base class, but that functionality is hidden, so
it's only part of the underlying implementation. The class user has no
access to the underlying functionality, and an object cannot be treated as a
instance of the base class (as it was in FName2.cpp).
You may wonder what the purpose of
private inheritance is, because the alternative of using composition to
create a private object in the new class seems more appropriate.
private inheritance is included in the language for completeness, but if
for no other reason than to reduce confusion, you'll usually want to use
composition rather than private inheritance. However, there may
occasionally be situations where you want to produce part of the same interface
as the base class and disallow the treatment of the object as if it were
a base-class object. private inheritance provides this
ability.

Publicizing privately inherited members
When you inherit privately, all the
public members of the base class become private. If you want any
of them to be visible, just say their names (no arguments or return values)
along with the using keyword in the public section of the
derived class:
//: C14:PrivateInheritance.cpp
class Pet {
public:
  char eat() const { return 'a'; }
  int speak() const { return 2; }
  float sleep() const { return 3.0; }
  float sleep(int) const { return 4.0; }
};
 
class Goldfish : Pet { // Private inheritance
public:
  using Pet::eat; // Name publicizes member
  using Pet::sleep; // Both overloaded members exposed
};
 
int main() {
  Goldfish bob;
  bob.eat();
  bob.sleep();
  bob.sleep(1);
//! bob.speak();// Error: private member function
} ///:~

Thus, private inheritance is
useful if you want to hide part of the functionality of the base
class.
Notice that exposing the name of an overloaded function exposes all the
versions of the overloaded function in the base class.
You should think carefully before using
private inheritance instead of composition; private inheritance
has particular complications when combined with runtime type identification
(this is the topic of a chapter in Volume 2 of this book, downloadable from
www.BruceEckel.com).
14-8 - 
protected
Now that you've been introduced to
inheritance, the keyword
protected finally has
meaning. In an ideal world,
private members would
always be hard-and-fast private, but in real projects there are times
when you want to make something hidden from the world at large and yet allow
access for members of derived classes. The protected keyword is a nod to
pragmatism; it says, “This is private as far as the class user is
concerned, but available to anyone who inherits from this
class.”
The best approach is to leave the data
members private - you should always preserve your right to change
the underlying implementation. You can then allow controlled access to
inheritors of your class through protected member
functions:
//: C14:Protected.cpp
// The protected keyword
#include <fstream>
using namespace std;
 
class Base {
  int i;
protected:
  int read() const { return i; }
  void set(int ii) { i = ii; }
public:
  Base(int ii = 0) : i(ii) {}
  int value(int m) const { return m*i; }
};
 
class Derived : public Base {
  int j;
public:
  Derived(int jj = 0) : j(jj) {}
  void change(int x) { set(x); }
}; 
 
int main() {
  Derived d;
  d.change(10);
} ///:~

You will find examples of the need for
protected in examples later in this book, and in Volume
2.
14-8-1 - 
protected inheritance
When you're inheriting, the base
class defaults to private, which means that all of the public member
functions are private to the user of the new class. Normally,
you'll make the inheritance public so the interface of the base
class is also the interface of the derived class. However, you can also use the
protected keyword during inheritance.
Protected derivation means
“implemented-in-terms-of” to other classes but “is-a”
for derived classes and friends. It's something you don't use very
often, but it's in the language for
completeness.
14-9 - 
Operator overloading &
inheritance
Except for the assignment operator,
operators are automatically inherited into a derived class. This can be
demonstrated by inheriting from C12:Byte.h:
//: C14:OperatorInheritance.cpp
// Inheriting overloaded operators
#include "../C12/Byte.h"
#include <fstream>
using namespace std;
ofstream out("ByteTest.out");
 
class Byte2 : public Byte {
public:
  // Constructors don't inherit:
  Byte2(unsigned char bb = 0) : Byte(bb) {}  
  // operator= does not inherit, but 
  // is synthesized for memberwise assignment.
  // However, only the SameType = SameType
  // operator= is synthesized, so you have to
  // make the others explicitly:
  Byte2& operator=(const Byte& right) {
    Byte::operator=(right);
    return *this;
  }
  Byte2& operator=(int i) { 
    Byte::operator=(i);
    return *this;
  }
};
 
// Similar test function as in C12:ByteTest.cpp:
void k(Byte2& b1, Byte2& b2) {
  b1 = b1 * b2 + b2 % b1;
 
  #define TRY2(OP) \
    out << "b1 = "; b1.print(out); \
    out << ", b2 = "; b2.print(out); \
    out << ";  b1 " #OP " b2 produces "; \
    (b1 OP b2).print(out); \
    out << endl;
 
  b1 = 9; b2 = 47;
  TRY2(+) TRY2(-) TRY2(*) TRY2(/)
  TRY2(%) TRY2(^) TRY2(&) TRY2(|)
  TRY2(<<) TRY2(>>) TRY2(+=) TRY2(-=)
  TRY2(*=) TRY2(/=) TRY2(%=) TRY2(^=)
  TRY2(&=) TRY2(|=) TRY2(>>=) TRY2(<<=)
  TRY2(=) // Assignment operator
 
  // Conditionals:
  #define TRYC2(OP) \
    out << "b1 = "; b1.print(out); \
    out << ", b2 = "; b2.print(out); \
    out << ";  b1 " #OP " b2 produces "; \
    out << (b1 OP b2); \
    out << endl;
 
  b1 = 9; b2 = 47;
  TRYC2(<) TRYC2(>) TRYC2(==) TRYC2(!=) TRYC2(<=)
  TRYC2(>=) TRYC2(&&) TRYC2(||)
 
  // Chained assignment:
  Byte2 b3 = 92;
  b1 = b2 = b3;
}
 
int main() {
  out << "member functions:" << endl;
  Byte2 b1(47), b2(9);
  k(b1, b2);
} ///:~

The test code is identical to that in
C12:ByteTest.cpp except that Byte2 is used instead of Byte.
This way all the operators are verified to work with Byte2 via
inheritance.
When you examine the class Byte2,
you'll see that the constructor must be explicitly defined, and that only
the operator= that assigns a Byte2 to a Byte2 is
synthesized; any other assignment operators that you need you'll have to
synthesize on your own.
14-10 - 
Multiple inheritance
You can inherit from one class, so it
would seem to make sense to inherit from more than one class at a time. Indeed
you can, but whether it makes sense as part of a design is a subject of
continuing debate. One thing is generally agreed upon: You shouldn't try
this until you've been programming quite a while and understand the
language thoroughly. By that time, you'll probably realize that no matter
how much you think you absolutely must use multiple inheritance, you can almost
always get away with single inheritance. 
Initially, multiple inheritance seems
simple enough: You add more classes in the base-class list during inheritance,
separated by commas. However, multiple inheritance introduces a number of
possibilities for ambiguity, which is why a chapter in Volume 2 is devoted to
the
subject.
14-11 - 
Incremental development
One of the advantages of inheritance and
composition is that these support incremental
development by allowing you
to introduce new code without causing bugs in existing code. If bugs do appear,
they are isolated within the new code. By inheriting from (or composing with) an
existing, functional class and adding data members and member functions (and
redefining existing member functions during inheritance) you leave the existing
code - that someone else may still be using - untouched and
unbugged. If a bug happens, you know it's in your new code, which is much
shorter and easier to read than if you had modified the body of existing
code.
It's rather amazing how cleanly the
classes are separated. You don't even need the source code for the member
functions in order to reuse the code, just the header file describing the class
and the object file or library file with the compiled member functions. (This is
true for both inheritance and composition.)
It's important to realize that
program development is an
incremental process, just like
human learning. You can do as much analysis as you want, but you still
won't know all the answers when you set out on a project. You'll
have much more success - and more immediate feedback - if you start
out to “grow” your project as an organic, evolutionary creature,
rather than constructing it all at once like a glass-box
skyscraper(52).
Although
inheritance for experimentation is a useful technique,
at some point after things stabilize you need to take a new look at your class
hierarchy with an eye to collapsing it into a sensible
structure(53).
Remember that underneath it all, inheritance is meant to express a relationship
that says, “This new class is a type of that old class.” Your
program should not be concerned with pushing bits around, but instead with
creating and manipulating objects of various types to express a model in the
terms given you from the problem
space.
14-12 - 
Upcasting
Earlier in the chapter, you saw how an
object of a class derived from ifstream has all the characteristics and
behaviors of an ifstream object. In FName2.cpp, any ifstream
member function could be called for an FName2
object.
The
most important aspect of inheritance is not that it provides member functions
for the new class, however. It's the relationship expressed between the
new class and the base class. This relationship can be summarized by saying,
“The new class is a type of the existing class.”

This description is not just a fanciful
way of explaining inheritance - it's supported directly by the
compiler. As an example, consider a base class called Instrument that
represents musical instruments and a derived class called Wind. Because
inheritance means that all the functions in the base class are also available in
the derived class, any message you can send to the base class can also be sent
to the derived class. So if the Instrument class has a
play( ) member function, so will Wind instruments. This means
we can accurately say that a Wind object is also a type of
Instrument. The following example shows how the compiler supports this
notion:
//: C14:Instrument.cpp
// Inheritance & upcasting
enum note { middleC, Csharp, Cflat }; // Etc.
 
class Instrument {
public:
  void play(note) const {}
};
 
// Wind objects are Instruments
// because they have the same interface:
class Wind : public Instrument {};
 
void tune(Instrument& i) {
  // ...
  i.play(middleC);
}
 
int main() {
  Wind flute;
  tune(flute); // Upcasting
} ///:~

What's interesting in this example
is the tune( ) function, which accepts an Instrument
reference. However, in main( ) the tune( ) function is
called by handing it a reference to a Wind object. Given that C++ is very
particular about type checking, it seems strange that a function that accepts
one type will readily accept another type, until you realize that a Wind
object is also an Instrument object, and there's no function that
tune( ) could call for an Instrument that isn't also in
Wind (this is what inheritance guarantees). Inside tune( ),
the code works for Instrument and anything derived from
Instrument, and the act of converting a Wind reference or pointer
into an Instrument reference or pointer is called
upcasting.
14-12-1 - 
Why “upcasting?”
The reason for the term is historical and
is based on the way class inheritance diagrams
have
traditionally been drawn: with the root at the top of the page, growing
downward. (Of course, you can draw your diagrams any way you find helpful.) The
inheritance diagram for Instrument.cpp is then:
[image: ]
Casting from derived to base moves
up on the inheritance diagram, so it's commonly referred to as
upcasting. Upcasting is always safe because you're going from a more
specific type to a more general type - the only thing that can occur to
the class interface is that it can lose member functions, not gain them. This is
why the compiler allows upcasting without any explicit casts or other special
notation.
14-12-2 - 
Upcasting and the
copy-constructor
If you allow the compiler to synthesize a
copy-constructor for a derived class, it will automatically call the base-class
copy-constructor, and then the copy-constructors for all the member objects (or
perform a bitcopy on built-in types) so you'll get the right
behavior:
//: C14:CopyConstructor.cpp
// Correctly creating the copy-constructor
#include <iostream>
using namespace std;
 
class Parent {
  int i;
public:
  Parent(int ii) : i(ii) {
    cout << "Parent(int ii)\n";
  }
  Parent(const Parent& b) : i(b.i) {
    cout << "Parent(const Parent&)\n";
  }
  Parent() : i(0) { cout << "Parent()\n"; }
  friend ostream&
    operator<<(ostream& os, const Parent& b) {
    return os << "Parent: " << b.i << endl;
  }
};
 
class Member {
  int i;
public:
  Member(int ii) : i(ii) {
    cout << "Member(int ii)\n";
  }
  Member(const Member& m) : i(m.i) {
    cout << "Member(const Member&)\n";
  }
  friend ostream&
    operator<<(ostream& os, const Member& m) {
    return os << "Member: " << m.i << endl;
  }
};
 
class Child : public Parent {
  int i;
  Member m;
public:
  Child(int ii) : Parent(ii), i(ii), m(ii) {
    cout << "Child(int ii)\n";
  }
  friend ostream&
    operator<<(ostream& os, const Child& c){
    return os << (Parent&)c << c.m
              << "Child: " << c.i << endl;
  }
};
 
int main() {
  Child c(2);
  cout << "calling copy-constructor: " << endl;
  Child c2 = c; // Calls copy-constructor
  cout << "values in c2:\n" << c2;
} ///:~

The operator<< for
Child is interesting because of the way that it calls the
operator<< for the Parent part within it: by casting the
Child object to a Parent& (if you cast to a base-class
object instead of a reference you will usually get undesirable
results):
return os << (Parent&)c << c.m

Since the compiler then sees it as a
Parent, it calls the Parent version of
operator<<.
You can see that Child has no
explicitly-defined copy-constructor. The compiler then synthesizes the
copy-constructor (since that is one of the four functions it will
synthesize, along with the
default constructor - if you don't create any constructors -
the operator= and the destructor) by calling the Parent
copy-constructor and the Member copy-constructor. This is shown in the
output 
Parent(int ii)
Member(int ii)
Child(int ii)
calling copy-constructor:
Parent(const Parent&)
Member(const Member&)
values in c2:
Parent: 2
Member: 2
Child: 2

However, if you try to write your own
copy-constructor for Child and you make an innocent mistake and do it
badly:
Child(const Child& c) : i(c.i), m(c.m) {}

then the default constructor will
automatically be called for the base-class part of Child, since
that's what the compiler falls back on when it has no other choice of
constructor to call (remember that some constructor must always be called
for every object, regardless of whether it's a subobject of another
class). The output will then be:
Parent(int ii)
Member(int ii)
Child(int ii)
calling copy-constructor:
Parent()
Member(const Member&)
values in c2:
Parent: 0
Member: 2
Child: 2

This is probably not what you expect,
since generally you'll want the base-class portion to be copied from the
existing object to the new object as part of copy-construction.
To repair the problem you must remember
to properly call the base-class copy-constructor (as the compiler does) whenever
you write your own copy-constructor. This can seem a little strange-looking at
first but it's another example of upcasting:
  Child(const Child& c)
    : Parent(c), i(c.i), m(c.m) {
    cout << "Child(Child&)\n";
 }

The strange part is where the
Parent copy-constructor is called: Parent(c). What does it mean to
pass a Child object to a Parent constructor? But Child is
inherited from Parent, so a Child reference is a
Parent reference. The base-class copy-constructor call upcasts a
reference to Child to a reference to Parent and uses it to perform
the copy-construction. When you write your own copy constructors you'll
almost always want to do the same
thing.
14-12-3 - 
Composition vs. inheritance
(revisited)
One of the clearest ways to determine
whether you should be using composition or inheritance is by asking whether
you'll ever need to upcast from your new class. Earlier in this chapter,
the Stack class was specialized using inheritance. However, chances are
the StringStack objects will be used only as string containers and
never upcast, so a more appropriate alternative is composition:
//: C14:InheritStack2.cpp
// Composition vs. inheritance
#include "../C09/Stack4.h"
#include "../require.h"
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
 
class StringStack {
  Stack stack; // Embed instead of inherit
public:
  void push(string* str) {
    stack.push(str);
  }
  string* peek() const {
    return (string*)stack.peek();
  }
  string* pop() {
    return (string*)stack.pop();
  }
};
 
int main() {
  ifstream in("InheritStack2.cpp");
  assure(in, "InheritStack2.cpp");
  string line;
  StringStack textlines;
  while(getline(in, line))
    textlines.push(new string(line));
  string* s;
  while((s = textlines.pop()) != 0) // No cast!
    cout << *s << endl;
} ///:~

The file is identical to
InheritStack.cpp, except that a Stack object is embedded in
StringStack, and member functions are called for the embedded object.
There's still no time or space overhead because the subobject takes up the
same amount of space, and all the additional type checking happens at compile
time.
Although it tends to be more confusing,
you could also use private inheritance to express “implemented in
terms of.” This would also solve the problem adequately. One place it
becomes important, however, is when multiple
inheritance might be warranted.
In that case, if you see a design in which composition can be used instead of
inheritance, you may be able to eliminate the need for multiple
inheritance.
14-12-4 - 
Pointer & reference
upcasting
In Instrument.cpp, the upcasting
occurs during the function call - a Wind object outside the
function has its reference taken and becomes an Instrument reference
inside the function. Upcasting can also occur during a simple assignment to a
pointer or reference:
Wind w;
Instrument* ip = &w; // Upcast
Instrument& ir = w; // Upcast

Like the function call, neither of these
cases requires an explicit
cast.
14-12-5 - 
A crisis
Of course, any
upcast loses type information about an object. If you
say
Wind w;
Instrument* ip = &w;

the compiler can deal with iponly as an Instrument pointer and nothing else. That is, it
cannot know that ip actually happens to point to a Wind
object. So when you call the play( ) member function by saying

ip->play(middleC);

the compiler can know only that
it's calling play( ) for an Instrument pointer, and
call the base-class version of Instrument::play( ) instead of what
it should do, which is call Wind::play( ). Thus, you won't get
the correct behavior.
This is a significant problem; it is
solved in Chapter 15 by introducing the third cornerstone of object-oriented
programming: polymorphism (implemented in C++ with virtual
functions).
14-13 - 
Summary
Both inheritance and composition allow
you to create a new type from existing types, and both embed subobjects of the
existing types inside the new type. Typically, however, you use composition to
reuse existing types as part of the underlying implementation of the new type
and inheritance when you want to force the new type to be the same type as the
base class (type equivalence guarantees interface equivalence). Since the
derived class has the base-class interface, it can be upcast to the base,
which is critical for polymorphism as you'll see in Chapter
15.
Although code reuse through composition
and inheritance is very helpful for rapid project development, you'll
generally want to redesign your class hierarchy before allowing other
programmers to become dependent on it. Your goal is a hierarchy in which each
class has a specific use and is neither too big (encompassing so much
functionality that it's unwieldy to reuse) nor annoyingly small (you
can't use it by itself or without adding
functionality).
14-14 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from www.BruceEckel.com.

		Modify Car.cpp so
that it also inherits from a class called Vehicle, placing appropriate
member functions in Vehicle (that is, make up some member functions). Add
a nondefault constructor to Vehicle, which you must call inside
Car's
constructor.
		Create
two classes, A and B, with default constructors that announce
themselves. Inherit a new class called C from A, and create a
member object of B in C, but do not create a constructor for
C. Create an object of class C and observe the
results.
		Create a
three-level hierarchy of classes with default constructors, along with
destructors, both of which announce themselves to cout.Verify
that for an object of the most derived type, all three constructors and
destructors are automatically called. Explain the order in which the calls are
made.
		Modify
Combined.cpp to add another level of inheritance and a new member object.
Add code to show when the constructors and destructors are being
called.
		In
Combined.cpp, create a class D that inherits from B and has
a member object of class C. Add code to show when the constructors and
destructors are being
called.
		Modify
Order.cpp to add another level of inheritance Derived3 with member
objects of class Member4 and Member5. Trace the output of the
program.
		In
NameHiding.cpp, verify that in Derived2, Derived3, and
Derived4, none of the base-class versions of f( ) are
available.
		Modify
NameHiding.cpp by adding three overloaded functions named
h( ) to Base, and show that redefining one of them in a
derived class hides the
others.
		Inherit a
class StringVector from vector<void*> and redefine the
push_back( ) and operator[] member functions to accept and
produce string*. What happens if you try to push_back( ) a
void*?
		Write
a class containing a long and use the psuedo-constructor call syntax in
the constructor to initialize the
long.
		Create
a class called Asteroid.Use inheritance to specialize the
PStash class in Chapter 13 (PStash.h & PStash.cpp) so
that it accepts and returns Asteroid pointers. Also modify
PStashTest.cpp to test your classes. Change the class so PStash is
a member
object.
		Repeat
Exercise 11 with a vector instead of a
PStash.
		In
SynthesizedFunctions.cpp, modify Chess to give it a default
constructor, copy-constructor, and assignment operator. Demonstrate that
you've written these
correctly.
		Create
two classes called Traveler and Pager without default
constructors, but with constructors that take an argument of type string,
which they simply copy to an internal string variable. For each class,
write the correct copy-constructor and assignment operator. Now inherit a class
BusinessTraveler from Traveler and give it a member object of type
Pager. Write the correct default constructor, a constructor that takes a
string argument, a copy-constructor, and an assignment
operator.
		Create a
class with two static member functions. Inherit from this class and
redefine one of the member functions. Show that the other is hidden in the
derived class.
		Look
up more of the member functions for ifstream. In FName2.cpp, try
them out on the file
object.
		Use
private and protected inheritance to create two new classes from a
base class. Then attempt to upcast objects of the derived class to the base
class. Explain what
happens.
		In
Protected.cpp, add a member function in Derived that calls the
protected Base member
read( ).
		Change
Protected.cpp so that Derived is using protected
inheritance. See if you can call value( ) for a Derived
object.
		Create a
class called SpaceShip with a fly( ) method. Inherit
Shuttle from SpaceShip and add a land( ) method.
Create a new Shuttle, upcast by pointer or reference to a
SpaceShip, and try to call the land( ) method. Explain the
results.
		Modify
Instrument.cpp to add a prepare( ) method to
Instrument. Call prepare( ) inside
tune( ).
		Modify
Instrument.cpp so that play( ) prints a message to
cout, and Wind redefines play( ) to print a different
message to cout. Run the program and explain why you probably
wouldn't want this behavior. Now put the virtual keyword (which you
will learn about in Chapter 15) in front of the play( ) declaration
in Instrument and observe the change in the
behavior.
		In
CopyConstructor.cpp, inherit a new class from Child and give it a
Member m. Write a proper constructor,
copy-constructor, operator=, and operator<< for
ostreams, and test the class in
main( ).
		Take
the example CopyConstructor.cpp and modify it by adding your own
copy-constructor to Child without calling the base-class
copy-constructor and see what happens. Fix the problem by making a proper
explicit call to the base-class copy constructor in the constructor-initializer
list of the Child
copy-constructor.
		Modify
InheritStack2.cpp to use a vector<string> instead of a
Stack.
		Create
a class Rock with a default constructor, a copy-constructor, an
assignment operator, and a destructor, all of which announce to cout that
they've been called. In main( ),create a
vector<Rock> (that is, hold Rock objects by value) and add
some Rocks. Run the program and explain the output you get. Note whether
the destructors are called for the Rock objects in the vector. Now
repeat the exercise with a vector<Rock*>. Is it possible to create
a
vector<Rock&>?
		This
exercise creates the design pattern called proxy. Start with a base class
Subject and give it three functions: f( ), g( ),
and h( ). Now inherit a class Proxy and two classes
Implementation1 and Implementation2 from Subject.
Proxy should contain a pointer to a Subject, and all the member
functions for Proxy should just turn around and make the same calls
through the Subject pointer. The Proxy constructor takes a pointer
to a Subject that is installed in the Proxy (usually by the
constructor). In main( ), create two different Proxy objects
that use the two different implementations. Now modify Proxy so that you
can dynamically change
implementations.
		Modify
ArrayOperatorNew.cpp from Chapter 13 to show that, if you inherit from
Widget, the allocation still works correctly. Explain why inheritance in
Framis.cpp from Chapter 13 would not work
correctly.
		Modify
Framis.cpp from Chapter 13 by inheriting from Framis and creating
new versions of new and delete for your derived class. Demonstrate
that they work
correctly.


15 - Polymorphism & Virtual Functions 
Polymorphism (implemented in C++
with
virtual
functions) is the third essential feature of an object-oriented programming
language, after data abstraction and inheritance. 
It provides another dimension of
separation of interface from implementation, to decouple what from
how. Polymorphism allows improved code organization and readability as
well as the creation of extensible programs that can be
“grown” not only during the original creation of the project, but
also when new features are desired.
Encapsulation creates new data types by
combining characteristics and behaviors. Access control separates the interface
from the implementation by making the details private. This kind of
mechanical organization makes ready sense to someone with a procedural
programming background. But virtual functions deal with
decoupling in terms of types. In Chapter 14, you
saw how inheritance allows the treatment of an object as its own type or
its base type. This ability is critical because it allows many types (derived
from the same base type) to be treated as if they were one type, and a single
piece of code to work on all those different types equally. The virtual function
allows one type to express its distinction from another, similar type, as long
as they're both derived from the same base type. This distinction is
expressed through differences in behavior of the functions that you can call
through the base class.
In this chapter, you'll learn about
virtual functions, starting from the basics with simple examples that strip away
everything but the “virtualness” of the
program.
15-1 - 
Evolution of C++ programmers
C
programmers seem to acquire C++
in three steps. First, as simply a “better C,” because C++ forces
you to declare all functions before using them and is much pickier about how
variables are used. You can often find the errors in a C program simply by
compiling it with a C++ compiler.
The second step is
“object-based” C++.
This means that you easily see the code organization benefits of grouping a data
structure together with the functions that act upon it, the value of
constructors and destructors, and perhaps some simple inheritance. Most
programmers who have been working with C for a while quickly see the usefulness
of this because, whenever they create a library, this is exactly what they try
to do. With C++, you have the aid of the compiler.
You can get stuck at the object-based
level because you can quickly get there and you get a lot of benefit without
much mental effort. It's also easy to feel like you're creating data
types - you make classes and objects, you send messages to those objects,
and everything is nice and neat.
But don't be fooled. If you stop
here, you're missing out on the greatest part of the language, which is
the jump to true object-oriented programming. You can do this only with virtual
functions.
Virtual
functions enhance the concept of
type instead of just encapsulating code inside structures and behind walls, so
they are without a doubt the most difficult concept for the new C++ programmer
to fathom. However, they're also the turning point in the understanding of
object-oriented programming. If you don't use virtual functions, you
don't understand OOP yet.
Because the virtual function is
intimately bound with the concept of type, and type is at the core of
object-oriented programming, there is no analog to the virtual function in a
traditional procedural language. As a procedural programmer, you have no
referent with which to think about virtual functions, as you do with almost
every other feature in the language. Features in a procedural language can be
understood on an algorithmic level, but virtual functions can be understood only
from a design
viewpoint.
15-2 - 
Upcasting
In Chapter 14 you saw how an object can
be used as its own type or as an object of its base type. In addition, it can be
manipulated through an address of the base type. Taking the address of an object
(either a pointer or a reference) and treating it as the address of the base
type is called upcasting because of the way
inheritance trees are drawn with the base class at the top.
You also saw a problem arise, which is
embodied in the following code:
//: C15:Instrument2.cpp
// Inheritance & upcasting
#include <iostream>
using namespace std;
enum note { middleC, Csharp, Eflat }; // Etc.
 
class Instrument {
public:
  void play(note) const {
    cout << "Instrument::play" << endl;
  }
};
 
// Wind objects are Instruments
// because they have the same interface:
class Wind : public Instrument {
public:
  // Redefine interface function:
  void play(note) const {
    cout << "Wind::play" << endl;
  }
};
 
void tune(Instrument& i) {
  // ...
  i.play(middleC);
}
 
int main() {
  Wind flute;
  tune(flute); // Upcasting
} ///:~

The function tune( ) accepts
(by reference) an
Instrument, but also without complaint anything derived from
Instrument. In main( ), you can see this happening as a
Wind object is passed to tune( ), with no
cast necessary. This is acceptable; the interface in
Instrument must exist in Wind, because Wind is publicly
inherited from Instrument. Upcasting from Wind to
Instrument may “narrow” that interface, but never less than
the full interface to Instrument.
The
same arguments are true when dealing with pointers; the only difference is that
the user must explicitly take the addresses of objects as they are passed into
the
function.
15-3 - 
The problem
The problem with Instrument2.cpp
can be seen by running the program. The output is Instrument::play. This
is clearly not the desired output, because you happen to know that the object is
actually a Wind and not just an Instrument. The call should
produce Wind::play. For that matter, any object of a class derived from
Instrument should have its version of play( ) used,
regardless of the situation.
The behavior of Instrument2.cpp is
not surprising, given C's approach to functions. To understand the issues,
you need to be aware of the concept of
binding.
15-3-1 - 
Function call binding
Connecting a function call to a function
body is called binding. When binding is performed before the program is
run (by the compiler and linker), it's called early
binding. You may not have heard the term before
because it's never been an option with procedural languages: C compilers
have only one kind of function call, and that's early
binding.
The problem in the program above is
caused by early binding because the compiler cannot know the correct function to
call when it has only an Instrument address.
The solution is called late
binding, which means the
binding occurs at runtime, based on the type of the object. Late binding is also
called dynamic binding or
runtime binding. When a
language implements late binding, there must be some mechanism to determine the
type of the object at runtime and call the appropriate member function. In the
case of a compiled language, the compiler still doesn't know the actual
object type, but it inserts code that finds out and calls the correct function
body. The late-binding mechanism varies from language to language, but you can
imagine that some sort of type information must be installed in the objects.
You'll see how this works
later.
15-4 - 
virtual functions
To cause late binding to occur for a
particular function, C++ requires that you use the virtual
keyword when declaring the
function in the base class. Late binding occurs only with virtual
functions, and only when you're using an address of the base class where
those virtual functions exist, although they may also be defined in an
earlier base class.
To create a member function as
virtual, you simply precede the declaration of
the function with the keyword virtual. Only the declaration needs the
virtual keyword, not the definition. If a function is declared as
virtual in the base class, it is virtual in all the derived
classes. The redefinition of a virtual function in a derived class is
usually called
overriding.
Notice
that you are only required to declare a function virtual in the base
class. All derived-class functions that match the signature of the base-class
declaration will be called using the virtual mechanism. You can use the
virtual keyword in the derived-class declarations
(it does
no harm to do so), but it is redundant and can be confusing. 
To get the desired behavior from
Instrument2.cpp, simply add the virtual keyword in the base class
before play( ):
//: C15:Instrument3.cpp
// Late binding with the virtual keyword
#include <iostream>
using namespace std;
enum note { middleC, Csharp, Cflat }; // Etc.
 
class Instrument {
public:
  virtual void play(note) const {
    cout << "Instrument::play" << endl;
  }
};
 
// Wind objects are Instruments
// because they have the same interface:
class Wind : public Instrument {
public:
  // Override interface function:
  void play(note) const {
    cout << "Wind::play" << endl;
  }
};
 
void tune(Instrument& i) {
  // ...
  i.play(middleC);
}
 
int main() {
  Wind flute;
  tune(flute); // Upcasting
} ///:~

This file is identical to
Instrument2.cpp except for the addition of the virtual keyword,
and yet the behavior is significantly different: Now the output is
Wind::play.
15-4-1 - 
Extensibility
With play( ) defined as
virtual in the base class, you can add as many new types as you want
without changing the tune( ) function. In a well-designed OOP
program, most or all of your functions will follow the model of
tune( ) and communicate only with the base-class
interface. Such a program is
extensible because you can add new functionality
by inheriting new data types from the common base class. The functions that
manipulate the base-class interface will not need to be changed at all to
accommodate the new classes.
Here's the instrument example with
more virtual functions and a number of new classes, all of which work correctly
with the old, unchanged tune( ) function:
//: C15:Instrument4.cpp
// Extensibility in OOP
#include <iostream>
using namespace std;
enum note { middleC, Csharp, Cflat }; // Etc.
 
class Instrument {
public:
  virtual void play(note) const {
    cout << "Instrument::play" << endl;
  }
  virtual char* what() const {
    return "Instrument";
  }
  // Assume this will modify the object:
  virtual void adjust(int) {}
};
 
class Wind : public Instrument {
public:
  void play(note) const {
    cout << "Wind::play" << endl;
  }
  char* what() const { return "Wind"; }
  void adjust(int) {}
};
 
class Percussion : public Instrument {
public:
  void play(note) const {
    cout << "Percussion::play" << endl;
  }
  char* what() const { return "Percussion"; }
  void adjust(int) {}
};
 
class Stringed : public Instrument {
public:
  void play(note) const {
    cout << "Stringed::play" << endl;
  }
  char* what() const { return "Stringed"; }
  void adjust(int) {}
};
 
class Brass : public Wind {
public:
  void play(note) const {
    cout << "Brass::play" << endl;
  }
  char* what() const { return "Brass"; }
};
 
class Woodwind : public Wind {
public:
  void play(note) const {
    cout << "Woodwind::play" << endl;
  }
  char* what() const { return "Woodwind"; }
};
 
// Identical function from before:
void tune(Instrument& i) {
  // ...
  i.play(middleC);
}
 
// New function:
void f(Instrument& i) { i.adjust(1); }
 
// Upcasting during array initialization:
Instrument* A[] = {
  new Wind,
  new Percussion,
  new Stringed,
  new Brass,
};
 
int main() {
  Wind flute;
  Percussion drum;
  Stringed violin;
  Brass flugelhorn;
  Woodwind recorder;
  tune(flute);
  tune(drum);
  tune(violin);
  tune(flugelhorn);
  tune(recorder);
  f(flugelhorn);
} ///:~

You can see that another inheritance
level has been added beneath Wind, but the virtual mechanism works
correctly no matter how many levels there are. The adjust( )
function is not overridden for Brass and Woodwind. When
this happens, the “closest” definition in the inheritance hierarchy
is automatically used - the compiler guarantees there's always
some definition for a virtual function, so you'll never end up with
a call that doesn't bind to a function body. (That would be
disastrous.)
The array A[ ] contains pointers
to the base class Instrument, so upcasting occurs during the process of
array initialization. This array and the function f( ) will be used
in later discussions.
In the call to tune( ),
upcasting is performed on each different type of object,
yet the desired behavior always takes place. This can be described as
“sending a message to an
object and letting the object worry about what to do with it.” The
virtual function is the lens to use when you're trying to analyze a
project: Where should the base classes occur, and how might you want to extend
the program? However, even if you don't discover the proper base class
interfaces and virtual functions at the initial creation of the program,
you'll often discover them later, even much later, when you set out to
extend or otherwise maintain the program. This is not an analysis or design
error; it simply means you didn't or couldn't know all the
information the first time. Because of the tight class modularization in C++, it
isn't a large problem when this occurs because changes you make in one
part of a system tend not to propagate to other parts of the system as they do
in
C.
15-5 - 
How C++ implements late binding
How can late
binding happen? All the work goes on behind the scenes
by the compiler, which installs the necessary late-binding mechanism when you
ask it to (you ask by creating virtual functions). Because programmers often
benefit from understanding the mechanism of virtual functions in C++, this
section will elaborate on the way the compiler implements this
mechanism.
The keyword
virtual tells the
compiler it should not perform early binding. Instead, it should automatically
install all the mechanisms necessary to perform late binding. This means that if
you call play( ) for a Brass object through an address for
the base-class Instrument, you'll get the proper
function.
To accomplish this, the typical
compiler(54)
creates a single table (called the VTABLE) for each
class that contains virtual functions. The compiler places the addresses
of the virtual functions for that particular class in the VTABLE. In each class
with virtual functions, it secretly places a pointer, called the vpointer
(abbreviated as VPTR), which
points to the VTABLE for that object. When you make a virtual function call
through a base-class pointer (that is, when you make a polymorphic
call), the compiler quietly
inserts code to fetch the VPTR and look up the function address in the VTABLE,
thus calling the correct function and causing late binding to take
place.
All of this - setting up the VTABLE
for each class, initializing the VPTR, inserting the code for the virtual
function call - happens automatically, so you don't have to worry
about it. With virtual functions, the proper function gets called for an object,
even if the compiler cannot know the specific type of the
object.
The following sections go into this
process in more
detail.
15-5-1 - 
Storing type
information
You can see that there is no explicit
type information stored in any of the classes. But the previous examples, and
simple logic, tell you that there must be some sort of type information stored
in the objects; otherwise the type could not be established at runtime. This is
true, but the type information is hidden. To see it, here's an example to
examine the sizes of classes that use virtual functions compared with those that
don't:
//: C15:Sizes.cpp
// Object sizes with/without virtual functions
#include <iostream>
using namespace std;
 
class NoVirtual {
  int a;
public:
  void x() const {}
  int i() const { return 1; }
};
 
class OneVirtual {
  int a;
public:
  virtual void x() const {}
  int i() const { return 1; }
};
 
class TwoVirtuals {
  int a;
public:
  virtual void x() const {}
  virtual int i() const { return 1; }
};
 
int main() {
  cout << "int: " << sizeof(int) << endl;
  cout << "NoVirtual: "
       << sizeof(NoVirtual) << endl;
  cout << "void* : " << sizeof(void*) << endl;
  cout << "OneVirtual: "
       << sizeof(OneVirtual) << endl;
  cout << "TwoVirtuals: "
       << sizeof(TwoVirtuals) << endl;
} ///:~

With no virtual functions, the size of
the object is exactly what you'd expect: the size of a
single(55)int. With a single virtual function in OneVirtual, the size of the
object is the size of NoVirtual plus the size of a void pointer.
It turns out that the compiler inserts a single pointer (the VPTR) into the
structure if you have one or more virtual functions. There is no size
difference between OneVirtual and TwoVirtuals. That's
because the VPTR points to a table of function addresses. You need only one
table because all the virtual function addresses are contained in that single
table.
This example required at least one data
member. If there had been no data members, the C++ compiler would have forced
the objects to be a nonzero size
because each object must have a
distinct address. If you imagine indexing into an array of zero-sized objects,
you'll understand. A “dummy” member is inserted into objects
that would otherwise be zero-sized. When the type information is inserted
because of the virtual keyword, this takes the place of the
“dummy” member. Try commenting out the int a in all the
classes in the example above to see
this.
15-5-2 - 
Picturing virtual
functions
To understand exactly what's going
on when you use a virtual function, it's helpful to visualize the
activities going on behind the curtain. Here's a drawing of the array of
pointers A[ ] in Instrument4.cpp:
[image: ]
The array of Instrument pointers
has no specific type information; they each point to an object of type
Instrument. Wind, Percussion, Stringed, and
Brass all fit into this category because they are derived from
Instrument (and thus have the same interface as Instrument, and
can respond to the same messages), so their addresses can also be placed into
the array. However, the compiler doesn't know that they are anything more
than Instrument objects, so left to its own devices it would normally
call the base-class versions of all the functions. But in this case, all those
functions have been declared with the virtual keyword, so something
different happens.
Each time you create a class that
contains virtual functions, or you derive from a class that contains virtual
functions, the compiler creates a unique VTABLE for that
class, seen on the right of the diagram. In that table it places the addresses
of all the functions that are declared virtual in this class or in the base
class. If you don't override a function that was declared virtual in the
base class, the compiler uses the address of the base-class version in the
derived class. (You can see this in the adjust entry in the Brass
VTABLE.) Then it places the VPTR (discovered in
Sizes.cpp) into the class. There is only one VPTR for each object when
using simple inheritance like this. The VPTR must be initialized to point to the
starting address of the appropriate VTABLE. (This happens in the constructor,
which you'll see later in more detail.)
Once the VPTR is initialized to the
proper VTABLE, the object in effect “knows” what type it is. But
this self-knowledge is worthless unless it is used at the point a virtual
function is called.
When you call a virtual function through
a base class address (the situation when the compiler doesn't have all the
information necessary to perform early binding), something special happens.
Instead of performing a typical function call, which is simply an
assembly-language CALL to a particular address, the compiler generates
different code to perform the function call. Here's what a call to
adjust( ) for a Brass object looks like, if made through an
Instrument pointer (An Instrument reference produces the same
result):
[image: ]
The compiler begins with the
Instrument pointer, which points to the starting address of the object.
All Instrument objects or objects derived from Instrument have
their VPTR in the same place (often at the beginning of the object), so the
compiler can pick the VPTR out of the object. The VPTR points to the starting
address of the VTABLE. All the VTABLE function addresses are laid out in the
same order, regardless of the specific type of the object. play( )
is first, what( ) is second, and adjust( ) is third. The
compiler knows that regardless of the specific object type, the
adjust( ) function is at the location VPTR+2. Thus, instead of
saying, “Call the function at the absolute location
Instrument::adjust” (early
binding;
the wrong action), it generates code that says, in effect, “Call the
function at VPTR+2.” Because the fetching of the VPTR and the
determination of the actual function address occur at runtime, you get the
desired late binding. You send a message to the object, and the object figures
out what to do with
it.
15-5-3 - 
Under the hood
It can be helpful to see the
assembly-language code generated by a virtual function
call,
so you can see that late-binding is indeed taking place. Here's the output
from one compiler for the call 
i.adjust(1);

inside the function f(Instrument&
i):
push  1
push  si
mov   bx, word ptr [si]
call  word ptr [bx+4]
add   sp, 4

The arguments of a C++ function call,
like a C function call, are pushed on the stack from right to left (this order
is required to support C's variable argument lists), so the argument
1 is pushed on the stack first. At this point in the function, the
register si (part of the Intel X86 processor architecture) contains the
address of i. This is also pushed on the stack because it is the starting
address of the object of interest. Remember that the starting address
corresponds to the value of this, and this
is quietly pushed on the stack as an argument before every member function call,
so the member function knows which particular object it is working on. So
you'll always see one more than the number of arguments pushed on the
stack before a member function call (except for static member functions,
which have no this).
Now the actual virtual function call must
be performed. First, the VPTR must be produced, so the
VTABLE can be found. For this compiler the VPTR is
inserted at the beginning of the object, so the contents of this
correspond to the VPTR. The line
mov bx, word ptr [si]

fetches the word that si (that is,
this)points to, which is the VPTR. It places the VPTR into the
register bx.
The VPTR contained in bx points to
the starting address of the VTABLE, but the function pointer to call isn't
at location zero of the VTABLE, but instead at location two (because it's
the third function in the list). For this memory model each function pointer is
two bytes long, so the compiler adds four to the VPTR to calculate where the
address of the proper function is. Note that this is a constant value,
established at compile time, so the only thing that matters is that the function
pointer at location number two is the one for adjust( ).
Fortunately, the compiler takes care of all the bookkeeping for you and ensures
that all the function pointers in all the VTABLEs of a particular class
hierarchy occur in the same order, regardless of the order that you may override
them in derived classes.
Once the address of the proper function
pointer in the VTABLE is calculated, that function is called. So the address is
fetched and called all at once in the statement
call word ptr [bx+4]

Finally, the stack pointer is moved back
up to clean off the arguments that were pushed before the call. In C and C++
assembly code you'll often see the caller clean off the arguments but this
may vary depending on processors and compiler
implementations.
15-5-4 - 
Installing the vpointer
Because the VPTR determines the virtual
function behavior of the object, you can see how it's critical that the
VPTR always be pointing to the proper VTABLE. You don't ever want to be
able to make a call to a virtual function before the VPTR is properly
initialized. Of course, the place where initialization can be guaranteed is in
the constructor, but none of the Instrument examples has a
constructor.
This is where creation of the default
constructor is essential. In the Instrument examples, the compiler
creates a default constructor that does nothing except initialize the VPTR. This
constructor, of course, is automatically called for all Instrument
objects before you can do anything with them, so you know that it's always
safe to call virtual functions.
The implications of the automatic
initialization of the VPTR inside the constructor are discussed in a later
section.
15-5-5 - 
Objects are different
It's important to realize that
upcasting deals only with addresses. If the compiler has
an object, it knows the exact type and therefore (in C++) will not use late
binding for any function calls - or at least, the compiler doesn't
need to use late binding. For efficiency's sake, most compilers
will perform early binding when
they are making a call to a virtual function for an object because they know the
exact type. Here's an example:
//: C15:Early.cpp
// Early binding & virtual functions
#include <iostream>
#include <string>
using namespace std;
 
class Pet {
public:
  virtual string speak() const { return ""; }
};
 
class Dog : public Pet {
public:
  string speak() const { return "Bark!"; }
};
 
int main() {
  Dog ralph;
  Pet* p1 = &ralph;
  Pet& p2 = ralph;
  Pet p3;
  // Late binding for both:
  cout << "p1->speak() = " << p1->speak() <<endl;
  cout << "p2.speak() = " << p2.speak() << endl;
  // Early binding (probably):
  cout << "p3.speak() = " << p3.speak() << endl;
} ///:~

In p1->speak( ) and
p2.speak( ), addresses are used, which means the information is
incomplete: p1 and p2 can represent the address of a Petor something derived from Pet, so the virtual mechanism must be
used. When calling p3.speak( ) there's no ambiguity. The
compiler knows the exact type and that it's an object, so it can't
possibly be an object derived from Pet - it's exactly
a Pet. Thus, early binding is probably used. However, if the compiler
doesn't want to work so hard, it can still use late binding and the same
behavior will
occur.
15-6 - 
Why virtual functions?
At this point you may have a question:
“If this technique is so important, and if it makes the
‘right' function call all the time, why is it an option? Why do I
even need to know about it?”
This is a good question, and the answer
is part of the fundamental philosophy of C++: “Because it's not
quite as efficient.” You
can see from the previous assembly-language output that instead of one simple
CALL to an absolute address, there are two - more sophisticated -
assembly instructions required to set up the virtual function call. This
requires both code space and execution time.
Some object-oriented languages have taken
the approach that late binding is so intrinsic to object-oriented programming
that it should always take place, that it should not be an option, and the user
shouldn't have to know about it. This is a design decision when creating a
language, and that particular path is appropriate for many
languages.(56)
However, C++ comes from the C heritage, where efficiency is critical. After all,
C was created to replace assembly language for the implementation of an
operating system (thereby rendering that operating system - Unix -
far more portable than its predecessors). One of the main reasons for the
invention of C++ was to make C programmers more
efficient.(57) And
the first question asked when C programmers encounter C++ is, “What kind
of size and speed impact will I get?” If the answer were,
“Everything's great except for function calls when you'll
always have a little extra overhead,” many people would stick with C
rather than make the change to C++. In addition, inline functions
would not be possible, because
virtual functions must have an address to put into the VTABLE. So the virtual
function is an option, and the language defaults to nonvirtual, which is
the fastest configuration. Stroustrup stated that his guideline was, “If
you don't use it, you don't pay for it.”
Thus, the
virtual keyword is
provided for efficiency tuning. When designing your classes, however, you
shouldn't be worrying about efficiency tuning. If you're going to
use polymorphism, use virtual functions everywhere. You only need to look for
functions that can be made non-virtual when searching for ways to speed up your
code (and there are usually much bigger gains to be had in other areas - a
good profiler will do a better job of finding bottlenecks than you will by
making guesses).
Anecdotal evidence suggests that the size
and speed impacts of going to C++ are within 10 percent of the size and speed of
C, and often much closer to the same. The reason you might get better size and
speed efficiency is because you may design a C++ program in a smaller, faster
way than you would using
C.
15-7 - 
Abstract base classes and pure virtual
functions
Often in a design, you want the base
class to present only an interface for its derived classes. That is, you
don't want anyone to actually create an object of the base class, only to
upcast to it so that its interface can be used. This is accomplished by making
that class abstract, which happens if you give it at least one pure
virtual function. You can recognize a pure virtual function because it uses
the virtual keyword and is followed by = 0. If anyone tries to
make an object of an abstract class, the compiler prevents them. This is a tool
that allows you to enforce a particular design.
When an abstract class is inherited, all
pure virtual functions must be implemented, or the inherited class becomes
abstract as well. Creating a pure virtual function allows you to put a member
function in an interface without being forced to provide a possibly meaningless
body of code for that member function. At the same time, a pure virtual function
forces inherited classes to provide a definition for it. 
In all of the instrument examples, the
functions in the base class Instrument were always “dummy”
functions. If these functions are ever called, something is wrong. That's
because the intent of Instrument is to create a common interface for all
of the classes derived from it.
[image: ]
The only reason to establish the common
interface is so it can be
expressed differently for each different subtype. It creates a basic form that
determines what's in common with all of the derived classes -
nothing else. So Instrument is an appropriate candidate to be an abstract
class. You create an abstract class when you only want to manipulate a set of
classes through a common interface, but the common interface doesn't need
to have an implementation (or at least, a full implementation).

If you have a concept like Instrument
that works as an abstract class, objects of that class almost always have no
meaning. That is, Instrument is meant to express only the interface, and
not a particular implementation, so creating an object that is only an
Instrument makes no sense, and you'll probably want to prevent the
user from doing it. This can be accomplished by making all the virtual functions
in Instrument print error messages, but that delays the appearance of the
error information until runtime and it requires reliable exhaustive testing on
the part of the user. It is much better to catch the problem at compile
time.
Here is the syntax used for a pure
virtual declaration:
virtual void f() = 0;

By doing this, you tell the compiler to
reserve a slot for a function in the VTABLE, but not to
put an address in that particular slot. Even if only one function in a class is
declared as pure virtual, the VTABLE is incomplete.
If the VTABLE for a class is incomplete,
what is the compiler supposed to do when someone tries to make an object of that
class? It cannot safely create an object of an abstract class, so you get an
error message from the compiler. Thus, the compiler guarantees the purity of the
abstract class. By making a class abstract, you ensure that the client
programmer cannot misuse it.
Here's Instrument4.cpp
modified to use pure virtual functions. Because the class has nothing but pure
virtual functions, we call it a pure abstract class:
//: C15:Instrument5.cpp
// Pure abstract base classes
#include <iostream>
using namespace std;
enum note { middleC, Csharp, Cflat }; // Etc.
 
class Instrument {
public:
  // Pure virtual functions:
  virtual void play(note) const = 0;
  virtual char* what() const = 0;
  // Assume this will modify the object:
  virtual void adjust(int) = 0;
};
// Rest of the file is the same ...
 
class Wind : public Instrument {
public:
  void play(note) const {
    cout << "Wind::play" << endl;
  }
  char* what() const { return "Wind"; }
  void adjust(int) {}
};
 
class Percussion : public Instrument {
public:
  void play(note) const {
    cout << "Percussion::play" << endl;
  }
  char* what() const { return "Percussion"; }
  void adjust(int) {}
};
 
class Stringed : public Instrument {
public:
  void play(note) const {
    cout << "Stringed::play" << endl;
  }
  char* what() const { return "Stringed"; }
  void adjust(int) {}
};
 
class Brass : public Wind {
public:
  void play(note) const {
    cout << "Brass::play" << endl;
  }
  char* what() const { return "Brass"; }
};
 
class Woodwind : public Wind {
public:
  void play(note) const {
    cout << "Woodwind::play" << endl;
  }
  char* what() const { return "Woodwind"; }
};
 
// Identical function from before:
void tune(Instrument& i) {
  // ...
  i.play(middleC);
}
 
// New function:
void f(Instrument& i) { i.adjust(1); }
 
int main() {
  Wind flute;
  Percussion drum;
  Stringed violin;
  Brass flugelhorn;
  Woodwind recorder;
  tune(flute);
  tune(drum);
  tune(violin);
  tune(flugelhorn);
  tune(recorder);
  f(flugelhorn);
} ///:~

Pure virtual functions are helpful
because they make explicit the abstractness of a class and tell both the user
and the compiler how it was intended to be used.
Note that pure virtual functions prevent
an abstract class from being passed into a function by value. Thus, it is
also a way to prevent object slicing (which will be described
shortly). By making a class abstract, you can ensure
that a pointer or reference is always used during upcasting to that
class.
Just because one pure virtual function
prevents the VTABLE from being completed doesn't mean that you don't
want function bodies for some of the others. Often you will want to call a
base-class version of a function, even if it is virtual. It's always a
good idea to put common code as close as possible to the root of your hierarchy.
Not only does this save code space, it allows easy propagation of
changes.
15-7-1 - 
Pure virtual
definitions
It's possible to provide a
definition for a pure virtual function in the base class. You're still
telling the compiler not to allow objects of that abstract base class, and the
pure virtual functions must still be defined in derived classes in order to
create objects. However, there may be a common piece of code that you want some
or all of the derived class definitions to call rather than duplicating that
code in every function. 
Here's what a pure virtual
definition looks like:
//: C15:PureVirtualDefinitions.cpp
// Pure virtual base definitions
#include <iostream>
using namespace std;
 
class Pet {
public:
  virtual void speak() const = 0;
  virtual void eat() const = 0;
  // Inline pure virtual definitions illegal:
  //!  virtual void sleep() const = 0 {}
};
 
// OK, not defined inline
void Pet::eat() const {
  cout << "Pet::eat()" << endl;
}
 
void Pet::speak() const { 
  cout << "Pet::speak()" << endl;
}
 
class Dog : public Pet {
public:
  // Use the common Pet code:
  void speak() const { Pet::speak(); }
  void eat() const { Pet::eat(); }
};
 
int main() {
  Dog simba;  // Richard's dog
  simba.speak();
  simba.eat();
} ///:~

The slot in the Pet VTABLE is
still empty, but there happens to be a function by that name that you can call
in the derived class.
The other benefit to this feature is that
it allows you to change from an ordinary virtual to a pure virtual without
disturbing the existing code. (This is a way for you to locate classes that
don't override that virtual
function.)
15-8 - 
Inheritance and the
VTABLE
You can imagine what happens when you
perform inheritance and override some of the virtual functions. The compiler
creates a new VTABLE for your new class, and it inserts your new function
addresses using the base-class function addresses for any virtual functions you
don't override. One way or another, for every object that can be created
(that is, its class has no pure virtuals) there's always a full set of
function addresses in the VTABLE, so you'll never be able to make a call
to an address that isn't there (which would be
disastrous).
But what happens when you inherit and add
new virtual functions in the derived
class?
Here's a simple example:
//: C15:AddingVirtuals.cpp
// Adding virtuals in derivation
#include <iostream>
#include <string>
using namespace std;
 
class Pet {
  string pname;
public:
  Pet(const string& petName) : pname(petName) {}
  virtual string name() const { return pname; }
  virtual string speak() const { return ""; }
};
 
class Dog : public Pet {
  string name;
public:
  Dog(const string& petName) : Pet(petName) {}
  // New virtual function in the Dog class:
  virtual string sit() const {
    return Pet::name() + " sits";
  }
  string speak() const { // Override
    return Pet::name() + " says 'Bark!'";
  }
};
 
int main() {
  Pet* p[] = {new Pet("generic"),new Dog("bob")};
  cout << "p[0]->speak() = "
       << p[0]->speak() << endl;
  cout << "p[1]->speak() = "
       << p[1]->speak() << endl;
//! cout << "p[1]->sit() = "
//!      << p[1]->sit() << endl; // Illegal
} ///:~

The class Pet contains a two
virtual functions: speak( ) and name( ). Dog adds
a third virtual function called sit( ), as well as overriding the
meaning of speak( ). A diagram will help you visualize what's
happening. Here are the VTABLEs created by the compiler
for Pet and Dog:
[image: ]
Notice that the compiler maps the
location of the speak( ) address into exactly the same spot in the
Dog VTABLE as it is in the Pet VTABLE. Similarly, if a class
Pug is inherited from Dog, its version of sit( ) would
be placed in its VTABLE in exactly the same spot as it is in Dog. This is
because (as you saw with the assembly-language example) the compiler generates
code that uses a simple numerical offset into the VTABLE to select the virtual
function. Regardless of the specific subtype the object belongs to, its VTABLE
is laid out the same way, so calls to the virtual functions will always be made
the same way.
In this case, however, the compiler is
working only with a pointer to a base-class object. The base class has only the
speak( ) and name( ) functions, so those is the only
functions the compiler will allow you to call. How could it possibly know that
you are working with a Dog object, if it has only a pointer to a
base-class object? That pointer might point to some other type, which
doesn't have a sit( ) function. It may or may not have some
other function address at that point in the VTABLE, but in either case, making a
virtual call to that VTABLE address is not what you want to do. So the compiler
is doing its job by protecting you from making virtual calls to functions that
exist only in derived classes.
There are some less-common cases in which
you may know that the pointer actually points to an object of a specific
subclass. If you want to call a function that only exists in that subclass, then
you must cast the pointer. You can remove the error message produced by the
previous program like this:
  ((Dog*)p[1])->sit()

Here, you happen to know that p[1]
points to a Dog object, but in general you don't know that. If your
problem is set up so that you must know the exact types of all objects, you
should rethink it, because you're probably not using virtual functions
properly. However, there are some situations in which the design works best (or
you have no choice) if you know the exact type of all objects kept in a generic
container. This is the problem of run-time type identification
(RTTI).
RTTI is all about casting base-class
pointers down to derived-class pointers (“up” and
“down” are relative to a typical class diagram, with the base class
at the top). Casting up happens automatically, with no coercion, because
it's completely safe. Casting down is unsafe because there's
no compile time information about the actual types, so you must know exactly
what type the object is. If you cast it into the wrong type, you'll be in
trouble.
RTTI is described later in this chapter,
and Volume 2 of this book has a chapter devoted to the
subject.
15-8-1 - 
Object slicing
There is a distinct difference between
passing the addresses of objects and passing objects by value when using
polymorphism. All the examples you've seen here, and virtually all the
examples you should see, pass addresses and not values. This is because
addresses all have the same
size(58), so
passing the address of an object of a derived type (which is usually a bigger
object) is the same as passing the address of an object of the base type (which
is usually a smaller object). As explained before, this is the goal when using
polymorphism - code that manipulates a base type can transparently
manipulate derived-type objects as well.
If you upcast to an object instead of a
pointer or reference, something will happen that may surprise you: the object is
“sliced” until all that remains is the subobject that corresponds to
the destination type of your cast. In the following example you can see what
happens when an object is sliced:
//: C15:ObjectSlicing.cpp
#include <iostream>
#include <string>
using namespace std;
 
class Pet {
  string pname;
public:
  Pet(const string& name) : pname(name) {}
  virtual string name() const { return pname; }
  virtual string description() const {
    return "This is " + pname;
  }
};
 
class Dog : public Pet {
  string favoriteActivity;
public:
  Dog(const string& name, const string& activity)
    : Pet(name), favoriteActivity(activity) {}
  string description() const {
    return Pet::name() + " likes to " +
      favoriteActivity;
  }
};
 
void describe(Pet p) { // Slices the object
  cout << p.description() << endl;
}
 
int main() {
  Pet p("Alfred");
  Dog d("Fluffy", "sleep");
  describe(p);
  describe(d);
} ///:~

The function describe( ) is
passed an object of type Pet by value. It then calls the virtual
function description( ) for the Pet object. In
main( ), you might expect the first call to produce “This is
Alfred,” and the second to produce “Fluffy likes to sleep.” In
fact, both calls use the base-class version of
description( ).
Two things are happening in this program.
First, because describe( ) accepts a Pet object
(rather than a pointer or reference), any calls to describe( ) will
cause an object the size of Pet to be pushed on the stack and cleaned up
after the call. This means that if an object of a class inherited from
Pet is passed to describe( ), the compiler accepts it, but it
copies only the Pet portion of the object. It slices the derived
portion off of the object, like this: 
[image: ]
Now you may wonder about the virtual
function call. Dog::description( ) makes use of portions of both
Pet (which still exists) and Dog, which no longer exists because
it was sliced off! So what happens when the virtual function is
called?
You're saved from disaster because
the object is being passed by value. Because of this, the compiler knows the
precise type of the object because the derived object has been forced to become
a base object. When passing by value, the
copy-constructor for a Pet
object is used, which initializes the VPTR to the Pet VTABLE and
copies only the Pet parts of the object. There's no explicit
copy-constructor here, so the compiler synthesizes one. Under all
interpretations, the object truly becomes a Pet during
slicing.
Object slicing actually removes part of
the existing object as it copies it into the new object, rather than simply
changing the meaning of an address as when using a pointer or reference. Because
of this, upcasting into an object is not done often; in fact, it's usually
something to watch out for and prevent. Note that, in this example, if
description( ) were made into a pure virtual function in the base
class (which is not unreasonable, since it doesn't really do anything in
the base class), then the compiler would prevent object slicing because that
wouldn't allow you to “create” an object of the base type
(which is what happens when you upcast by value). This could be the most
important value of pure virtual functions: to prevent object slicing by
generating a compile-time error message if someone tries to do
it.
15-9 - 
Overloading &
overriding
In Chapter 14, you saw that redefining an
overloaded function in the base class
hides all of the other
base-class versions of that function. When virtual functions are involved
the behavior is a little different. Consider a modified version of the
NameHiding.cpp example from Chapter 14:
//: C15:NameHiding2.cpp
// Virtual functions restrict overloading
#include <iostream>
#include <string>
using namespace std;
 
class Base {
public:
  virtual int f() const { 
    cout << "Base::f()\n"; 
    return 1; 
  }
  virtual void f(string) const {}
  virtual void g() const {}
};
 
class Derived1 : public Base {
public:
  void g() const {}
};
 
class Derived2 : public Base {
public:
  // Overriding a virtual function:
  int f() const { 
    cout << "Derived2::f()\n"; 
    return 2;
  }
};
 
class Derived3 : public Base {
public:
  // Cannot change return type:
  //! void f() const{ cout << "Derived3::f()\n";}
};
 
class Derived4 : public Base {
public:
  // Change argument list:
  int f(int) const { 
    cout << "Derived4::f()\n"; 
    return 4; 
  }
};
 
int main() {
  string s("hello");
  Derived1 d1;
  int x = d1.f();
  d1.f(s);
  Derived2 d2;
  x = d2.f();
//!  d2.f(s); // string version hidden
  Derived4 d4;
  x = d4.f(1);
//!  x = d4.f(); // f() version hidden
//!  d4.f(s); // string version hidden
  Base& br = d4; // Upcast
//!  br.f(1); // Derived version unavailable
  br.f(); // Base version available
  br.f(s); // Base version abailable
} ///:~

The first thing to notice is that in
Derived3, the compiler will not allow you to change the return type of an
overridden function (it will allow it if f( ) is not virtual). This
is an important restriction because the compiler must guarantee that you can
polymorphically call the function through the base class, and if the base class
is expecting an int to be returned from f( ), then the
derived-class version of f( ) must keep that contract or else things
will break.
The rule shown in Chapter 14 still works:
if you override one of the overloaded member functions in the base class, the
other overloaded versions become hidden in the derived class. In main( )
the code that tests Derived4 shows that this happens even if the new
version of f( ) isn't actually overriding an existing virtual
function interface - both of the base-class versions of f( )
are hidden by f(int). However, if you upcast d4 to Base,
then only the base-class versions are available (because that's what the
base-class contract promises) and the derived-class version is not available
(because it isn't specified in the base
class).
15-9-1 - 
Variant return type
The Derived3 class above suggests
that you cannot modify the return type of a virtual function during overriding.
This is generally true, but there is a special case in which you can slightly
modify the return type. If you're returning a pointer or a reference to a
base class, then the overridden version of the function may return a pointer or
reference to a class derived from what the base returns. For
example:
//: C15:VariantReturn.cpp
// Returning a pointer or reference to a derived
// type during ovverriding
#include <iostream>
#include <string>
using namespace std;
 
class PetFood {
public:
  virtual string foodType() const = 0;
};
 
class Pet {
public:
  virtual string type() const = 0;
  virtual PetFood* eats() = 0;
};
 
class Bird : public Pet {
public:
  string type() const { return "Bird"; }
  class BirdFood : public PetFood {
  public:
    string foodType() const { 
      return "Bird food"; 
    }
  };
  // Upcast to base type:
  PetFood* eats() { return &bf; }
private:
  BirdFood bf;
};
 
class Cat : public Pet {
public:
  string type() const { return "Cat"; }
  class CatFood : public PetFood {
  public:
    string foodType() const { return "Birds"; }
  };
  // Return exact type instead:
  CatFood* eats() { return &cf; }
private:
  CatFood cf;
};
 
int main() {
  Bird b; 
  Cat c;
  Pet* p[] = { &b, &c, };
  for(int i = 0; i < sizeof p / sizeof *p; i++)
    cout << p[i]->type() << " eats "
         << p[i]->eats()->foodType() << endl;
  // Can return the exact type:
  Cat::CatFood* cf = c.eats();
  Bird::BirdFood* bf;
  // Cannot return the exact type:
//!  bf = b.eats();
  // Must downcast:
  bf = dynamic_cast<Bird::BirdFood*>(b.eats());
} ///:~

The Pet::eats( ) member
function returns a pointer to a PetFood. In Bird, this member
function is overloaded exactly as in the base class, including the return type.
That is, Bird::eats( ) upcasts the BirdFood to a
PetFood.
But in Cat, the return type of
eats( )  is a pointer to CatFood, a type derived from
PetFood. The fact that the return type is inherited from the return type
of the base-class function is the only reason this compiles. That way, the
contract is still fulfilled; eats( ) always returns a PetFood
pointer.
If you think polymorphically, this
doesn't seem necessary. Why not just upcast all the return types to
PetFood*, just as Bird::eats( ) did? This is typically a good
solution, but at the end of main( ), you see the difference:
Cat::eats( ) can return the exact type of PetFood, whereas
the return value of Bird::eats( ) must be downcast to the exact
type.
So being able to return the exact type is
a little more general, and doesn't lose the specific type information by
automatically upcasting. However, returning the base type will generally solve
your problems so this is a rather specialized
feature.
15-10 - 
virtual functions &
constructors
When an object containing virtual
functions is created, its VPTR must be initialized to
point to the proper VTABLE. This must be done before
there's any possibility of calling a virtual function. As you might guess,
because the constructor has the job of bringing an object into existence, it is
also the constructor's job to set up the VPTR. The compiler secretly
inserts code into the beginning of the constructor that initializes the VPTR.
And as described in Chapter 14, if you don't explicitly create a
constructor for a class, the compiler will synthesize one for you. If the class
has virtual functions, the synthesized constructor will include the proper VPTR
initialization code. This has several implications.
The first concerns efficiency. The reason
for inline functions is
to reduce the calling overhead for small functions. If C++ didn't provide
inline functions, the preprocessor might be used to create these
“macros.” However, the preprocessor has no concept of access or
classes, and therefore couldn't be used to create member function macros.
In addition, with constructors that must have hidden code inserted by the
compiler, a preprocessor macro wouldn't work at all.
You must be aware when hunting for
efficiency
holes that the compiler is inserting hidden code into your constructor function.
Not only must it initialize the VPTR, it must also check the value of
this (in case the operator new returns zero) and call
base-class constructors. Taken together, this code can impact what you thought
was a tiny inline function call. In particular, the size of the constructor may
overwhelm the savings you get from reduced function-call overhead. If you make a
lot of inline constructor calls, your code size can grow without any benefits in
speed.
Of course, you probably won't make
all tiny constructors non-inline right away, because they're much easier
to write as inlines. But when you're tuning your code, remember to
consider removing the inline
constructors.
15-10-1 - 
Order of constructor
calls
The second interesting facet of
constructors and virtual functions concerns the order of constructor calls and
the way virtual calls are made within constructors.
All
base-class constructors are always called in the constructor for an inherited
class. This makes sense because the constructor has a special job: to see that
the object is built properly. A derived class has access only to its own
members, and not those of the base class. Only the base-class constructor can
properly initialize its own elements. Therefore it's essential that all
constructors get called; otherwise the entire object wouldn't be
constructed properly. That's why the compiler enforces a constructor call
for every portion of a derived class. It will call the default constructor if
you don't explicitly call a base-class constructor in the constructor
initializer list. If there is no
default constructor, the
compiler will complain.
The order of the constructor calls is
important. When you inherit, you know all about the base class and can access
any public and protected members of the base class. This means you
must be able to assume that all the members of the base class are valid when
you're in the derived class. In a normal member function, construction has
already taken place, so all the members of all parts of the object have been
built. Inside the constructor, however, you must be able to assume that all
members that you use have been built. The only way to guarantee this is for the
base-class constructor to be called first. Then when you're in the
derived-class constructor, all the members you can access in the base class have
been initialized. “Knowing all members are valid” inside the
constructor is also the reason that, whenever possible, you should initialize
all member objects (that is, objects placed in the class using composition) in
the constructor initializer
list. If you follow this practice, you can assume that all base class members
and member objects of the current object have been
initialized.
15-10-2 - 
Behavior of virtual functions inside
constructors
The hierarchy of constructor calls brings
up an interesting dilemma. What happens if you're inside a constructor and
you call a virtual function? Inside an ordinary member function you can imagine
what will happen - the virtual call is resolved at runtime because the
object cannot know whether it belongs to the class the member function is in, or
some class derived from it. For consistency, you might think this is what should
happen inside constructors.
This is not the case. If you call a
virtual function inside a constructor, only the local version of the function is
used. That is, the virtual mechanism doesn't work within the
constructor.
This behavior makes sense for two
reasons. Conceptually, the constructor's job is to bring the object into
existence (which is hardly an ordinary feat). Inside any constructor, the object
may only be partially formed - you can only know that the base-class
objects have been initialized, but you cannot know which classes are inherited
from you. A virtual function call, however, reaches “forward” or
“outward” into the inheritance hierarchy. It calls a function in a
derived class. If you could do this inside a constructor, you'd be calling
a function that might manipulate members that hadn't been initialized yet,
a sure recipe for disaster.
The second reason is a mechanical one.
When a constructor is called, one of the first things it does is initialize its
VPTR. However, it can only know that it is of the
“current” type - the type the constructor was written for. The
constructor code is completely ignorant of whether or not the object is in the
base of another class. When the compiler generates code for that constructor, it
generates code for a constructor of that class, not a base class and not a class
derived from it (because a class can't know who inherits it). So the VPTR
it uses must be for the VTABLE of that class. The
VPTR remains initialized to that VTABLE for the rest of the object's
lifetime unless this isn't the last constructor call. If a
more-derived constructor is called afterwards, that constructor sets the VPTR to
its VTABLE, and so on, until the last constructor finishes. The state of
the VPTR is determined by the constructor that is called last. This is another
reason why the constructors are
called in order from base to most-derived.
But while all this series of constructor
calls is taking place, each constructor has set the VPTR to its own VTABLE. If
it uses the virtual mechanism for function calls, it will produce only a call
through its own VTABLE, not the most-derived VTABLE (as would be the case after
all the constructors were called). In addition, many compilers recognize
that a virtual function call is being made inside a constructor, and perform
early binding because they know that late-binding will produce a call only to
the local function. In either event, you won't get the results you might
initially expect from a virtual function call inside a
constructor.
15-11 - 
Destructors and virtual destructors
You cannot use the
virtual keyword with
constructors, but destructors
can and often must be virtual.
The constructor
has the special job of putting an object together piece-by-piece, first by
calling the base constructor, then the more derived constructors in order of
inheritance (it must also call member-object constructors along the way).
Similarly, the destructor has a special job: it must disassemble an object that
may belong to a hierarchy of classes. To do this, the compiler generates code
that calls all the destructors, but in the reverse order that they are
called by the constructor. That is, the destructor starts at the most-derived
class and works its way down to the base class. This is the safe and desirable
thing to do because  the current destructor can always know that the base-class
members are alive and active. If you need to call a base-class member function
inside your destructor, it is safe to do so. Thus, the destructor can perform
its own cleanup, then call the next-down destructor, which will perform
its own cleanup, etc. Each destructor knows what
its class is derived from, but not what is derived from
it.
You should keep in mind that constructors
and destructors are the only places where this hierarchy of calls must happen
(and thus the proper hierarchy is automatically generated by the compiler). In
all other functions, only that function will be called (and not
base-class versions), whether it's virtual or not. The only way for
base-class versions of the same function to be called in ordinary functions
(virtual or not) is if you explicitly call that
function.
Normally, the action of the destructor is
quite adequate. But what happens if you want to manipulate an object through a
pointer to its base class (that is, manipulate the object through its generic
interface)? This activity is a major objective in object-oriented programming.
The problem occurs when you want to delete a pointer of this type for an
object that has been created on the heap with new. If the pointer is to
the base class, the compiler can only know to call the base-class version of the
destructor during delete. Sound familiar? This is the same problem that
virtual functions were created to solve for the general case. Fortunately,
virtual functions work for destructors as they do for all other functions except
constructors.
//: C15:VirtualDestructors.cpp
// Behavior of virtual vs. non-virtual destructor
#include <iostream>
using namespace std;
 
class Base1 {
public:
  ~Base1() { cout << "~Base1()\n"; }
};
 
class Derived1 : public Base1 {
public:
  ~Derived1() { cout << "~Derived1()\n"; }
};
 
class Base2 {
public:
  virtual ~Base2() { cout << "~Base2()\n"; }
};
 
class Derived2 : public Base2 {
public:
  ~Derived2() { cout << "~Derived2()\n"; }
};
 
int main() {
  Base1* bp = new Derived1; // Upcast
  delete bp;
  Base2* b2p = new Derived2; // Upcast
  delete b2p;
} ///:~

When you run the program, you'll
see that delete bp only calls the base-class destructor, while delete
b2p calls the derived-class destructor followed by the base-class
destructor, which is the behavior we desire. Forgetting to make a destructor
virtual is an insidious bug because it often doesn't directly
affect the behavior of your program, but it can quietly introduce a memory leak.
Also, the fact that some destruction is occurring can further mask the
problem.
Even though the destructor, like the
constructor, is an “exceptional” function, it is possible for the
destructor to be virtual because the object already knows what type it is
(whereas it doesn't during construction). Once an object has been
constructed, its VPTR is initialized, so virtual function calls can take
place.
15-11-1 - 
Pure virtual destructors
While
pure
virtual destructors are legal in Standard C++, there is an added constraint when
using them: you must provide a function body for the pure virtual destructor.
This seems counterintuitive;  how can a virtual function be “pure”
if it needs a function body? But if you keep in mind that constructors and
destructors are special operations it makes more sense, especially if you
remember that all destructors in a class hierarchy are always called. If you
could leave off the definition for a pure virtual destructor, what
function body would be called during destruction? Thus, it's absolutely
necessary that the compiler and linker enforce the existence of a function body
for a pure virtual destructor.
If it's pure, but it has to have a
function body, what's the value of it? The only difference you'll
see between the pure and non-pure virtual destructor is that the pure virtual
destructor does cause the base class to be abstract, so you cannot create an
object of the base class (although this would also be true if any other member
function of the base class were pure virtual).
Things are a bit confusing, however, when
you inherit a class from one that contains a pure virtual destructor. Unlike
every other pure virtual function, you are not required to provide a
definition of a pure virtual destructor in the derived class. The fact that the
following compiles and links is the proof:
//: C15:UnAbstract.cpp
// Pure virtual destructors 
// seem to behave strangely
 
class AbstractBase {
public:
  virtual ~AbstractBase() = 0;
};
 
AbstractBase::~AbstractBase() {}
 
class Derived : public AbstractBase {};
// No overriding of destructor necessary?
 
int main() { Derived d; } ///:~

Normally, a pure virtual function in a
base class would cause the derived class to be abstract unless it (and all other
pure virtual functions) is given a definition. But here, this seems not to be
the case. However, remember that the compiler automatically creates a
destructor definition for every class if you don't create one.
That's what's happening here - the base class destructor is
being quietly overridden, and thus the definition is being provided by the
compiler and Derived is not actually abstract.
This brings up an interesting question:
What is the point of a pure virtual destructor? Unlike an ordinary pure virtual
function, you must give it a function body. In a derived class, you
aren't forced to provide a definition since the compiler synthesizes the
destructor for you. So what's the difference between a regular virtual
destructor and a pure virtual destructor?
The only distinction occurs when you have
a class that only has a single pure virtual function: the destructor. In this
case, the only effect of the purity of the destructor is to prevent the
instantiation of the base class. If there were any other pure virtual functions,
they would prevent the instantiation of the base class, but if there are no
others, then the pure virtual destructor will do it. So, while the addition of a
virtual destructor is essential, whether it's pure or not isn't so
important.
When you run the following example, you
can see that the pure virtual function body is called after the derived class
version, just as with any other destructor:
//: C15:PureVirtualDestructors.cpp
// Pure virtual destructors
// require a function body
#include <iostream>
using namespace std;
 
class Pet {
public:
  virtual ~Pet() = 0;
};
 
Pet::~Pet() {
  cout << "~Pet()" << endl;
}
 
class Dog : public Pet {
public:
  ~Dog() {
    cout << "~Dog()" << endl;
  }
};
 
int main() {
  Pet* p = new Dog; // Upcast
  delete p; // Virtual destructor call
} ///:~

As a guideline, any time you have a
virtual function in a class, you should immediately add a virtual destructor
(even if it does nothing). This way, you ensure against any surprises
later.
15-11-2 - 
Virtuals in
destructors
There's something that happens
during destruction that you might not immediately expect. If you're inside
an ordinary member function and you call a virtual function, that function is
called using the late-binding mechanism. This is not true with destructors,
virtual or not. Inside a destructor, only the “local” version of the
member function is called; the virtual mechanism is ignored.
//: C15:VirtualsInDestructors.cpp
// Virtual calls inside destructors
#include <iostream>
using namespace std;
 
class Base {
public:
  virtual ~Base() { 
    cout << "Base1()\n"; 
    f(); 
  }
  virtual void f() { cout << "Base::f()\n"; }
};
 
class Derived : public Base {
public:
  ~Derived() { cout << "~Derived()\n"; }
  void f() { cout << "Derived::f()\n"; }
};
 
int main() {
  Base* bp = new Derived; // Upcast
  delete bp;
} ///:~

During the destructor call,
Derived::f( ) is not called, even though f( ) is
virtual.
Why is this? Suppose the virtual
mechanism were used inside the destructor. Then it would be possible for
the virtual call to resolve to a function that was “farther out”
(more derived) on the inheritance hierarchy than the current destructor. But
destructors are called from the “outside in” (from the most-derived
destructor down to the base destructor), so the actual function called would
rely on portions of an object that have already been destroyed! Instead,
the compiler resolves the calls at compile-time and calls only the
“local” version of the function. Notice that the same is true for
the constructor (as described earlier), but in the constructor's case the
type information wasn't available, whereas in the destructor the
information (that is, the VPTR) is there, but is isn't
reliable.
15-11-3 - 
Creating an object-based
hierarchy
An issue that has been recurring
throughout this book during the demonstration of the container classes
Stack and Stash is the “ownership problem.” The
“owner” refers to who or what is responsible for calling delete
for objects that have been created dynamically (using new). The
problem when using containers is that they need to be flexible enough to hold
different types of objects. To do this, the containers have held void
pointers and so they haven't known the type of object they've held.
Deleting a void pointer doesn't call the destructor, so the
container couldn't be responsible for cleaning up its
objects.
One solution was presented in the example
C14:InheritStack.cpp, in which the Stack was inherited into a new
class that accepted and produced only string pointers. Since it knew that
it could hold only pointers to string objects, it could properly delete
them. This was a nice solution, but it requires you to inherit a new container
class for each type that you want to hold in the container. (Although this seems
tedious now, it will actually work quite well in Chapter 16, when templates are
introduced.)
The problem is that you want the
container to hold more than one type, but you don't want to use
void pointers. Another solution is to use polymorphism by forcing all the
objects held in the container to be inherited from the same base class. That is,
the container holds the objects of the base class, and then you can call virtual
functions - in particular, you can call virtual destructors to solve the
ownership problem.
This
solution uses what is referred to as a singly-rooted hierarchy or an
object-based hierarchy (because the root class of the hierarchy is
usually named “Object”). It turns out that there are many other
benefits to using a singly-rooted hierarchy; in fact, every other
object-oriented language but C++ enforces the use of such a hierarchy -
when you create a class, you are automatically inheriting it directly or
indirectly from a common base class, a base class that was established by the
creators of the language. In C++, it was thought that the enforced use of this
common base class would cause too much overhead, so it was left out. However,
you can choose to use a common base class in your own projects, and this subject
will be examined further in Volume 2 of this book.
To solve the ownership problem, we can
create an extremely simple Object for the base class, which contains only
a virtual destructor. The Stack can then hold classes inherited from
Object: 
//: C15:OStack.h
// Using a singly-rooted hierarchy
#ifndef OSTACK_H
#define OSTACK_H
 
class Object {
public:
  virtual ~Object() = 0;
};
 
// Required definition:
inline Object::~Object() {}
 
class Stack {
  struct Link {
    Object* data;
    Link* next;
    Link(Object* dat, Link* nxt) : 
      data(dat), next(nxt) {}
  }* head;
public:
  Stack() : head(0) {}
  ~Stack(){ 
    while(head)
      delete pop();
  }
  void push(Object* dat) {
    head = new Link(dat, head);
  }
  Object* peek() const { 
    return head ? head->data : 0;
  }
  Object* pop() {
    if(head == 0) return 0;
    Object* result = head->data;
    Link* oldHead = head;
    head = head->next;
    delete oldHead;
    return result;
  }
};
#endif // OSTACK_H ///:~

To simplify things by keeping everything
in the header file, the (required) definition for the pure virtual destructor is
inlined into the header file, and pop( ) (which might be considered
too large for inlining) is also inlined.
Link
objects now hold pointers to Object rather than void pointers, and
the Stack will only accept and return Object pointers. Now
Stack is much more flexible, since it will hold lots of different types
but will also destroy any objects that are left on the Stack. The new
limitation (which will be finally removed when templates are applied to the
problem in Chapter 16) is that anything that is placed on the Stack must
be inherited from Object. That's fine if you are starting your
class from scratch, but what if you already have a class such as string
that you want to be able to put onto the Stack? In this case, the new
class must be both a string and an Object, which means it must be
inherited from both classes. This is called multiple inheritance and it
is the subject of an entire chapter in Volume 2 of this book (downloadable from
www.BruceEckel.com). When you read that chapter, you'll see that
multiple inheritance can be fraught with complexity, and is a feature you should
use sparingly. In this situation, however, everything is simple enough that we
don't trip across any multiple inheritance pitfalls:
//: C15:OStackTest.cpp
//{T} OStackTest.cpp
#include "OStack.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
 
// Use multiple inheritance. We want 
// both a string and an Object:
class MyString: public string, public Object {
public:
  ~MyString() {
    cout << "deleting string: " << *this << endl;
  }
  MyString(string s) : string(s) {}
};
 
int main(int argc, char* argv[]) {
  requireArgs(argc, 1); // File name is argument
  ifstream in(argv[1]);
  assure(in, argv[1]);
  Stack textlines;
  string line;
  // Read file and store lines in the stack:
  while(getline(in, line))
    textlines.push(new MyString(line));
  // Pop some lines from the stack:
  MyString* s;
  for(int i = 0; i < 10; i++) {
    if((s=(MyString*)textlines.pop())==0) break;
    cout << *s << endl;
    delete s; 
  }
  cout << "Letting the destructor do the rest:"
    << endl;
} ///:~

Although this is similar to the previous
version of the test program for Stack, you'll notice that only 10
elements are popped from the stack, which means there are probably some objects
remaining. Because the Stack knows that it holds Objects, the
destructor can properly clean things up, and you'll see this in the output
of the program, since the MyString objects print messages as they are
destroyed.
Creating containers that hold
Objects is not an unreasonable approach - if you have a
singly-rooted hierarchy (enforced either by the language or by the requirement
that every class inherit from Object). In that case, everything is
guaranteed to be an Object and so it's not very complicated to use
the containers. In C++, however, you cannot expect this from every class, so
you're bound to trip over multiple inheritance if you take this approach.
You'll see in Chapter 16 that templates solve the problem in a much
simpler and more elegant
fashion.
15-12 - 
Operator
overloading
You can make operators virtual
just like other member functions. Implementing virtual operators often
becomes confusing, however, because you may be operating on two objects, both
with unknown types. This is usually the case with mathematical components (for
which you often overload operators). For example, consider a system that deals
with matrices, vectors and scalar values, all three of which are derived from
class Math:
//: C15:OperatorPolymorphism.cpp
// Polymorphism with overloaded operators
#include <iostream>
using namespace std;
 
class Matrix;
class Scalar;
class Vector;
 
class Math {
public:
  virtual Math& operator*(Math& rv) = 0;
  virtual Math& multiply(Matrix*) = 0;
  virtual Math& multiply(Scalar*) = 0;
  virtual Math& multiply(Vector*) = 0;
  virtual ~Math() {}
};
 
class Matrix : public Math {
public:
  Math& operator*(Math& rv) {
    return rv.multiply(this); // 2nd dispatch
  }
  Math& multiply(Matrix*) {
    cout << "Matrix * Matrix" << endl;
    return *this;
  }
  Math& multiply(Scalar*) {
    cout << "Scalar * Matrix" << endl;
    return *this;
  }
  Math& multiply(Vector*) {
    cout << "Vector * Matrix" << endl;
    return *this;
  }
};
 
class Scalar : public Math  {
public:
  Math& operator*(Math& rv) {
    return rv.multiply(this); // 2nd dispatch
  }
  Math& multiply(Matrix*) {
    cout << "Matrix * Scalar" << endl;
    return *this;
  }
  Math& multiply(Scalar*) {
    cout << "Scalar * Scalar" << endl;
    return *this;
  }
  Math& multiply(Vector*) {
    cout << "Vector * Scalar" << endl;
    return *this;
  }
};
 
class Vector : public Math  {
public:
  Math& operator*(Math& rv) {
    return rv.multiply(this); // 2nd dispatch
  }
  Math& multiply(Matrix*) {
    cout << "Matrix * Vector" << endl;
    return *this;
  }
  Math& multiply(Scalar*) {
    cout << "Scalar * Vector" << endl;
    return *this;
  }
  Math& multiply(Vector*) {
    cout << "Vector * Vector" << endl;
    return *this;
  }
};
 
int main() {
  Matrix m; Vector v; Scalar s;
  Math* math[] = { &m, &v, &s };
  for(int i = 0; i < 3; i++)
    for(int j = 0; j < 3; j++) {
      Math& m1 = *math[i];
      Math& m2 = *math[j];
      m1 * m2;
    }
} ///:~

For simplicity, only the operator*
has been overloaded. The goal is to be able to multiply any two Math
objects and produce the desired result - and note that multiplying a
matrix by a vector is a very different operation than multiplying a vector by a
matrix.
The problem is that, in
main( ), the expression m1 * m2 contains two upcast
Math references, and thus two objects of unknown type. A virtual function
is only capable of making a single dispatch - that is, determining the
type of one unknown object. To determine both types a technique called
multiple dispatching is used in this example, whereby what appears to be
a single virtual function call results in a second virtual call. By the time
this second call is made, you've determined both types of object, and can
perform the proper activity. It's not transparent at first, but if you
stare at the example for awhile it should begin to make sense. This topic is
explored in more depth in the Design Patterns chapter in Volume 2, which you can
download at www.BruceEckel.com.

15-13 - 
Downcasting
As you might guess, since there's
such a thing as upcasting - moving up an
inheritance hierarchy - there should also be
downcasting to move down
a hierarchy. But upcasting is easy since as you move up an inheritance hierarchy
the classes always converge to more general classes. That is, when you upcast
you are always clearly derived from an ancestor class (typically only one,
except in the case of multiple inheritance) but when you downcast there are
usually several possibilities that you could cast to. More specifically, a
Circle is a type of Shape (that's the upcast), but if you
try to downcast a Shape it could be a Circle, Square,
Triangle, etc. So the dilemma is figuring out a way to safely downcast.
(But an even more important issue is asking yourself why you're
downcasting in the first place instead of just using polymorphism to
automatically figure out the correct type. The avoidance of downcasting is
covered in Volume 2 of this book.)
C++ provides a special
explicit cast (introduced
in Chapter 3) called
dynamic_cast that is a
type-safe downcast operation. When you use
dynamic_cast to try to cast down to a particular type, the return value
will be a pointer to the desired type only if the cast is proper and successful,
otherwise it will return zero to indicate that this was not the correct type.
Here's a minimal example:
//: C15:DynamicCast.cpp
#include <iostream>
using namespace std;
 
class Pet { public: virtual ~Pet(){}};
class Dog : public Pet {};
class Cat : public Pet {};
 
int main() {
  Pet* b = new Cat; // Upcast
  // Try to cast it to Dog*:
  Dog* d1 = dynamic_cast<Dog*>(b);
  // Try to cast it to Cat*:
  Cat* d2 = dynamic_cast<Cat*>(b);
  cout << "d1 = " << (long)d1 << endl;
  cout << "d2 = " << (long)d2 << endl;
} ///:~

When you use dynamic_cast, you
must be working with a true polymorphic hierarchy - one with
virtual functions - because dynamic_cast
uses information stored in the VTABLE to determine the actual type. Here, the
base class contains a virtual destructor and that suffices. In
main( ), a Cat pointer is upcast to a Pet, and then a
downcast is attempted to both a Dog pointer and a Cat pointer.
Both pointers are printed, and you'll see when you run the program that
the incorrect downcast produces a zero result. Of course, whenever you downcast
you are responsible for checking to make sure that the result of the cast is
nonzero. Also, you should not assume that the pointer will be exactly the same,
because sometimes pointer adjustments take place during upcasting and
downcasting (in particular, with multiple inheritance).
A dynamic_cast requires a little
bit of extra overhead to run; not much, but if you're doing a lot of
dynamic_casting (in which case you should be seriously questioning your
program design) this may become a performance issue. In some cases you may know
something special during downcasting that allows you to say for sure what type
you're dealing with, in which case the extra overhead of the
dynamic_cast becomes unnecessary, and you can use a
static_cast instead.
Here's how it might work:
//: C15:StaticHierarchyNavigation.cpp
// Navigating class hierarchies with static_cast
#include <iostream>
#include <typeinfo>
using namespace std;
 
class Shape { public: virtual ~Shape() {}; };
class Circle : public Shape {};
class Square : public Shape {};
class Other {};
 
int main() {
  Circle c;
  Shape* s = &c; // Upcast: normal and OK
  // More explicit but unnecessary:
  s = static_cast<Shape*>(&c);
  // (Since upcasting is such a safe and common
  // operation, the cast becomes cluttering)
  Circle* cp = 0;
  Square* sp = 0;
  // Static Navigation of class hierarchies
  // requires extra type information:
  if(typeid(s) == typeid(cp)) // C++ RTTI
    cp = static_cast<Circle*>(s);
  if(typeid(s) == typeid(sp))
    sp = static_cast<Square*>(s);
  if(cp != 0)
    cout << "It's a circle!" << endl;
  if(sp != 0)
    cout << "It's a square!" << endl;
  // Static navigation is ONLY an efficiency hack;
  // dynamic_cast is always safer. However:
  // Other* op = static_cast<Other*>(s);
  // Conveniently gives an error message, while
  Other* op2 = (Other*)s;
  // does not
} ///:~

In this program, a new feature is used
that is not fully described until Volume 2 of this book, where a chapter is
given to the topic: C++'s
run-time
type information (RTTI) mechanism. RTTI allows you to discover type
information that has been lost by upcasting. The dynamic_cast is actually
one form of RTTI. Here, the
typeid keyword (declared
in the header file
<typeinfo>)is used to detect the types of the pointers. You can see that the type of
the upcast Shape pointer is successively compared to a Circle
pointer and a Square pointer to see if there's a match.
There's more to RTTI than typeid, and you can also imagine that it
would be fairly easy to implement your own type information system using a
virtual function.
A Circle object is created and the
address is upcast to a Shape pointer; the second version of the
expression shows how you can use static_cast to be more explicit about
the upcast. However, since an upcast is always safe and it's a common
thing to do, I consider an
explicit
cast for upcasting to be cluttering and unnecessary. 
RTTI is used to determine the type, and
then static_cast is used to perform the downcast. But notice that in this
design the process is effectively the same as using dynamic_cast, and the
client programmer must do some testing to discover the cast that was actually
successful. You'll typically want a situation that's more
deterministic than in the example above before using static_cast rather
than dynamic_cast (and, again, you want to carefully examine your design
before using dynamic_cast).
If a class hierarchy has no
virtual functions (which is a questionable design) or if you have other
information that allows you to safely downcast, it's a tiny bit faster to
do the downcast statically than
with dynamic_cast. In addition, static_cast won't allow you
to cast out of the hierarchy, as the traditional cast will, so it's safer.
However, statically navigating class hierarchies is always risky and you should
use dynamic_cast unless you have a special
situation.
15-14 - 
Summary
Polymorphism
- implemented in C++ with virtual functions
- means “different forms.” In object-oriented programming, you
have the same face (the common interface in the base class) and different forms
using that face: the different versions of the virtual
functions.
You've seen in this chapter that
it's impossible to understand, or even create, an example of polymorphism
without using data abstraction and inheritance. Polymorphism is a feature that
cannot be viewed in isolation (like const or a switch statement,
for example), but instead works only in concert, as part of a “big
picture” of class relationships. People are often confused by other,
non-object-oriented features of C++, like overloading and default arguments,
which are sometimes presented as object-oriented. Don't be fooled; if it
isn't late binding, it isn't polymorphism.
To use polymorphism - and thus,
object-oriented techniques - effectively in your programs you must expand
your view of programming to include not just members and messages of an
individual class, but also the commonality among classes and their relationships
with each other. Although this requires significant effort, it's a worthy
struggle, because the results are faster program development, better code
organization, extensible programs, and easier code maintenance.
Polymorphism completes the
object-oriented features of the language, but there are two more major
features in C++: templates (which are introduced in
Chapter 16 and covered in much more detail in Volume 2), and exception handling
(which is covered in Volume 2). These features provide you as much increase in
programming power as each of the object-oriented features: abstract data typing,
inheritance, and
polymorphism.
15-15 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
www.BruceEckel.com.

		Create a simple
“shape” hierarchy: a base class called Shape and derived
classes called Circle, Square, and Triangle. In the base
class, make a virtual function called draw( ), and override this in
the derived classes. Make an array of pointers to Shape objects that you
create on the heap (and thus perform upcasting of the pointers), and call
draw( ) through the base-class pointers, to verify the behavior of
the virtual function. If your debugger supports it, single-step through the
code.
		Modify
Exercise 1 so draw( ) is a pure virtual function. Try creating an
object of type Shape.Try to call the pure virtual function inside
the constructor and see what happens. Leaving it as a pure virtual, give
draw( ) a
definition.
		Expanding
on Exercise 2, create a function that takes a Shape object by
value and try to upcast a derived object in as an argument. See what
happens. Fix the function by taking a reference to the Shape
object.
		Modify
C14:Combined.cpp so that f( ) is virtual in the base
class. Change main( ) to perform an upcast and a virtual
call.
		Modify
Instrument3.cpp by adding a virtual prepare( ) function.Call prepare( ) inside
tune( ).
		Create
an inheritance hierarchy of Rodent: Mouse, Gerbil,
Hamster, etc. In the base class, provide methods that are common to all
Rodents, and redefine these in the derived classes to perform different
behaviors depending on the specific type of Rodent. Create an array of
pointers to Rodent, fill it with different specific types of
Rodents, and call your base-class methods to see what
happens.
		Modify
Exercise 6 so that you use a vector<Rodent*> instead of an array of
pointers. Make sure that memory is cleaned up
properly.
		Starting
with the previous Rodent hierarchy, inherit BlueHamster from
Hamster (yes, there is such a thing; I had one when I was a kid),
override the base-class methods, and show that the code that calls the
base-class methods doesn't need to change in order to accommodate the new
type. 
		Starting with
the previous Rodent hierarchy, add a non virtual destructor, create an
object of class Hamster using new, upcast the pointer to a
Rodent*, and delete the pointer to show that it doesn't call
all the destructors in the hierarchy. Change the destructor to be virtual
and demonstrate that the behavior is now
correct.
		Starting
with the previous Rodent hierarchy, modify Rodent so it is a pure
abstract base
class.
		Create an
air-traffic control system with base-class Aircraft and various derived
types. Create a Tower class with a vector<Aircraft*> that
sends the appropriate messages to the various aircraft under its
control.
		Create a
model of a greenhouse by inheriting various types of Plant and building
mechanisms into your greenhouse that take care of the
plants.
		In
Early.cpp, make Pet a pure abstract base
class.
		In
AddingVirtuals.cpp, make all the member functions of Pet pure
virtuals, but provide a definition for name( ). Fix Dog as
necessary, using the base-class definition of
name( ).
		Write
a small program to show the difference between calling a virtual function inside
a normal member function and calling a virtual function inside a constructor.
The program should prove that the two calls produce different
results.
		Modify
VirtualsInDestructors.cpp by inheriting a class from Derived and
overriding f( ) and the destructor. In main( ), create
and upcast an object of your new type, then delete
it.
		Take Exercise 16
and add calls to f( ) in each destructor. Explain what
happens.
		Create a
class that has a data member and a derived class that adds another data member.
Write a non-member function that takes an object of the base class by
value and prints out the size of that object using sizeof. In
main( ) create an object of the derived class, print out its size,
and then call your function. Explain what
happens.
		Create a
simple example of a virtual function call and generate assembly output. Locate
the assembly code for the virtual call and trace and explain the
code.
		Write a class
with one virtual function and one non-virtual function. Inherit a new class,
make an object of this class, and upcast to a pointer of the base-class type.
Use the clock( ) function found in <ctime>
(you'll need to look this up in your local C library guide) to measure the
difference between a virtual call and non-virtual call. You'll need to
make multiple calls to each function inside your timing loop in order to see the
difference.
		Modify
C14:Order.cpp by adding a virtual function in the base class of the
CLASS macro (have it print something) and by making the destructor
virtual. Make objects of the various subclasses and upcast them to the base
class. Verify that the virtual behavior works and that proper construction and
destruction takes
place.
		Write a class
with three overloaded virtual functions. Inherit a new class from this and
override one of the functions. Create an object of your derived class. Can you
call all the base class functions through the derived-class object? Upcast the
address of the object to the base. Can you call all three functions through the
base? Remove the overridden definition in the derived class. Now can you call
all the base class functions through the derived-class
object?
		Modify
VariantReturn.cpp to show that its behavior works with references as well
as pointers.
		In
Early.cpp, how can you tell whether the compiler makes the call using
early or late binding? Determine the case for your own
compiler.
		Create
a base class containing a clone( ) function that returns a pointer
to a copy of the current object. Derive two subclasses that override
clone( ) to return copies of their specific types. In
main( ), create and upcast objects of your two derived types, then
call clone( ) for each and verify that the cloned copies are the
correct subtypes. Experiment with your clone( ) function so that you
return the base type, then try returning the exact derived type. Can you think
of situations in which the latter approach is
necessary?
		Modify
OStackTest.cpp by creating your own class, then multiply-inheriting it
with Object to create something that can be placed into the Stack.
Test your class in
main( ).
		Add
a type called Tensor to
OperatorPolymorphism.cpp.
		(Intermediate)
Create a base class X with no data members and no constructor, but with a
virtual function. Create a class Y that inherits from X, but
without an explicit constructor. Generate assembly code and examine it to
determine if a constructor is created and called for X, and if so, what
the code does. Explain what you discover. X has no default constructor,
so why doesn't the compiler
complain?
		(Intermediate)
Modify Exercise 28 by writing constructors for both classes so that each
constructor calls a virtual function. Generate assembly code. Determine where
the VPTR is being assigned inside each constructor. Is the virtual mechanism
being used by your compiler inside the constructor? Establish why the local
version of the function is still being
called.
		(Advanced)
If function calls to an object passed by value weren't early-bound,
a virtual call might access parts that didn't exist. Is this possible?
Write some code to force a virtual call, and see if this causes a crash. To
explain the behavior, examine what happens when you pass an object by
value.
		(Advanced)
Find out exactly how much more time is required for a virtual function call by
going to your processor's assembly-language information or other technical
manual and finding out the number of clock states required for a simple call
versus the number required for the virtual function
instructions.
		Determine
the sizeof the VPTR for your implementation. Now multiply-inherit two
classes that contain virtual functions. Did you get one VPTR or two in the
derived
class?
		Create a
class with data members and virtual functions. Write a function that looks at
the memory in an object of your class and prints out the various pieces of it.
To do this you will need to experiment and iteratively discover where the VPTR
is located in the
object.
		Pretend that
virtual functions don't exist, and modify Instrument4.cpp so that
it uses dynamic_cast to make the equivalent of the virtual calls. Explain
why this is a bad
idea.
		Modify
StaticHierarchyNavigation.cpp so that instead of using C++ RTTI you
create your own RTTI via a virtual function in the base class called
whatAmI( ) and an enum type { Circles, Squares
};.
		Start with
PointerToMemberOperator.cpp from Chapter 12 and show that polymorphism
still works with pointers-to-members, even if operator->* is
overloaded.


16 - Introduction to Templates
Inheritance and composition
provide a way to reuse object code. The
template feature in C++
provides 
a way to reuse source
code.
Although C++ templates are a
general-purpose programming tool, when they were introduced in the language,
they seemed to discourage the use of object-based container-class hierarchies
(demonstrated at the end of Chapter 15). For example, the Standard C++
containers and algorithms (explained in two chapters of Volume 2 of this book,
downloadable from www.BruceEckel.com) are built exclusively with
templates and are relatively easy for the programmer to use.
This chapter not only demonstrates the
basics of templates, it is also an introduction to containers, which are
fundamental components of object-oriented programming and are almost completely
realized through the containers in the Standard C++ Library. You'll see
that this book has been using container examples - the Stash and
Stack - throughout, precisely to get you comfortable with
containers; in this chapter the concept of the iterator will also be
added. Although containers are ideal examples for use with templates, in Volume
2 (which has an advanced templates chapter) you'll learn that there are
many other uses for templates as
well.
16-1 - 
Containers
Suppose you want to create a
stack, as we have been doing throughout the book. This
stack class will hold ints, to keep it simple:
//: C16:IntStack.cpp
// Simple integer stack
//{L} fibonacci
#include "fibonacci.h"
#include "../require.h"
#include <iostream>
using namespace std;
 
class IntStack {
  enum { ssize = 100 };
  int stack[ssize];
  int top;
public:
  IntStack() : top(0) {}
  void push(int i) {
    require(top < ssize, "Too many push()es");
    stack[top++] = i;
  }
  int pop() {
    require(top > 0, "Too many pop()s");
    return stack[--top];
  }
};
 
int main() {
  IntStack is;
  // Add some Fibonacci numbers, for interest:
  for(int i = 0; i < 20; i++)
    is.push(fibonacci(i));
  // Pop & print them:
  for(int k = 0; k < 20; k++)
    cout << is.pop() << endl;
} ///:~

The class IntStack is a trivial
example of a push-down stack. For simplicity it has been created here with a
fixed size, but you can also modify it to automatically expand by allocating
memory off the heap, as in the Stack class that has been examined
throughout the book.
main( ) adds some integers to
the stack, and pops them off again. To make the example more interesting, the
integers are created with the fibonacci( )
function, which generates the traditional rabbit-reproduction numbers. Here is
the header file that declares the function:
//: C16:fibonacci.h
// Fibonacci number generator
int fibonacci(int n); ///:~

Here's the
implementation:
//: C16:fibonacci.cpp {O}
#include "../require.h"
 
int fibonacci(int n) {
  const int sz = 100;
  require(n < sz);
  static int f[sz]; // Initialized to zero
  f[0] = f[1] = 1;
  // Scan for unfilled array elements:
  int i;
  for(i = 0; i < sz; i++)
    if(f[i] == 0) break;
  while(i <= n) {
    f[i] = f[i-1] + f[i-2];
    i++;
  }
  return f[n];
} ///:~

This is a fairly efficient
implementation, because it never generates the numbers more than once. It uses a
static array of
int, and relies on the fact that the compiler will initialize a
static array to zero. The first for loop moves the index i
to where the first array element is zero, then a while loop adds
Fibonacci numbers to the array until the desired element is reached. But notice
that if the Fibonacci numbers through element n are already initialized,
it skips the while loop
altogether.
16-1-1 - 
The need for containers
Obviously, an integer stack isn't a
crucial tool. The real need for containers comes when you start making objects
on the heap using new and destroying them with delete. In the
general programming problem, you don't know how many objects you're
going to need while you're writing the program. For example, in an
air-traffic control system you don't want to limit the number of planes
your system can handle. You don't want the program to abort just because
you exceed some number. In a computer-aided design system, you're dealing
with lots of shapes, but only the user determines (at runtime) exactly how many
shapes you're going to need. Once you notice this tendency, you'll
discover lots of examples in your own programming situations.
C programmers who rely on virtual memory
to handle their “memory management” often find the idea of
new,
delete, and container classes disturbing. Apparently, one practice in C
is to create a huge global array, larger than anything the program would appear
to need. This may not require much thought (or awareness of
malloc( ) and free( )), but it produces programs that
don't port well and that hide subtle bugs.
In addition, if you create a huge global
array of objects in C++, the constructor and destructor overhead can slow things
down significantly. The C++ approach works much better: When you need an object,
create it with new, and put its pointer in a container. Later on, fish it
out and do something to it. This way, you create only the objects you absolutely
need. And usually you don't have all the initialization conditions
available at the start-up of the program. new allows you to wait until
something happens in the environment before you can actually create the
object.
So in the most common situation,
you'll make a container that holds pointers to some objects of interest.
You will create those objects using new and put the resulting pointer in
the container (potentially upcasting it in the process), pulling it out later
when you want to do something with the object. This technique produces the most
flexible, general sort of
program.
16-2 - 
Overview of templates
Now a problem arises. You have an
IntStack, which holds integers. But you want a stack that holds shapes or
aircraft or plants or something else. Reinventing your source code every time
doesn't seem like a very intelligent approach with a language that touts
reusability. There must be a better way.
There are three techniques for source
code reuse in this situation: the C way, presented here for contrast; the
Smalltalk approach, which significantly affected C++; and the C++ approach:
templates.
The C solution. Of course
you're trying to get away from the C approach because it's messy and
error prone and completely inelegant. In this approach, you copy the source code
for a Stack and make modifications by hand, introducing new errors in the
process. This is certainly not a very productive
technique.
The Smalltalk solution. Smalltalk
(and Java, following its example)
took a simple and straightforward approach: You want to
reuse code, so use inheritance.
To
implement this, each container class holds items of the generic base class
Object (similar to the example at the end of Chapter 15). But because the
library in Smalltalk is of such fundamental importance, you don't ever
create a class from scratch. Instead, you must always inherit it from an
existing class. You find a class as close as possible to the one you want,
inherit from it, and make a few changes. Obviously, this is a benefit because it
minimizes your effort (and explains why you spend a lot of time learning the
class library before becoming an effective Smalltalk
programmer).
But it also means that all classes in
Smalltalk end up being part of a single inheritance tree. You must inherit from
a branch of this tree when creating a new class. Most of the tree is already
there (it's the Smalltalk class library), and at the root of the tree is a
class called Object - the same class that each Smalltalk container
holds.
This is a neat trick because it means
that every class in the Smalltalk (and
Java(59))
class hierarchy is derived from Object, so every class can be held in
every container (including that container itself). This type of single-tree
hierarchy based on a fundamental generic type (often named Object, which
is also the case in Java) is referred to as an “object-based
hierarchy.” You may have heard this term and assumed it was some new
fundamental concept in OOP, like polymorphism. It simply refers to a class
hierarchy with Object (or some similar name) at its root and container
classes that hold Object.
Because the Smalltalk class library had a
much longer history and experience behind it than did C++, and because the
original C++ compilers had no container class libraries, it seemed like a
good idea to duplicate the Smalltalk library in C++. This was done as an
experiment with an early C++
implementation(60),
and because it represented a significant body of code, many people began using
it. In the process of trying to use the container classes, they discovered a
problem.
The problem was that in Smalltalk (and
most other OOP languages that I know of), all classes are automatically derived
from a single hierarchy, but this isn't true in C++. You might have your
nice object-based hierarchy with its container classes, but then you might buy a
set of shape classes or aircraft classes from another vendor who didn't
use that hierarchy. (For one thing, using that hierarchy imposes overhead, which
C programmers eschew.) How do you insert a separate class tree into the
container class in your object-based hierarchy? Here's what the problem
looks like:
[image: ]
Because C++ supports multiple independent
hierarchies, Smalltalk's object-based hierarchy does not work so
well.
The solution seemed obvious. If you can
have many inheritance hierarchies, then you should be able to inherit from more
than one class: Multiple
inheritance will solve the problem. So you do the following (a similar example
was given at the end of Chapter 15):
[image: ]
Now OShape has
Shape's characteristics and behaviors, but because it is also
derived from Object it can be placed in Container. The extra
inheritance into OCircle, OSquare, etc. is necessary so that those
classes can be upcast into OShape and thus retain the correct behavior.
You can see that things are rapidly getting messy.
Compiler vendors invented and included
their own object-based container-class hierarchies, most of which have since
been replaced by template versions. You can argue that multiple inheritance is
needed for solving general programming problems, but you'll see in Volume
2 of this book that its complexity is best avoided except in special
cases.
16-2-1 - 
The template solution
Although an object-based hierarchy with
multiple inheritance is conceptually straightforward, it turns out to be painful
to use. In his original
book(61)
Stroustrup demonstrated what he considered a preferable alternative to the
object-based hierarchy. Container classes were created as large preprocessor
macros with arguments that could
be substituted with your desired type. When you wanted to create a container to
hold a particular type, you made a couple of macro calls.
Unfortunately, this approach was confused
by all the existing Smalltalk literature and programming experience, and it was
a bit unwieldy. Basically, nobody got it.
In the meantime, Stroustrup and the C++
team at Bell Labs had modified his original macro approach, simplifying it and
moving it from the domain of the preprocessor into the compiler. This new
code-substitution device is called a
template(62),
and it represents a completely different way to reuse code. Instead of reusing
object code, as with inheritance and composition, a template reuses source
code. The container no longer holds a generic base
class called Object, but instead it holds an unspecified parameter. When
you use a template, the parameter is substituted by the compiler, much
like the old macro approach, but cleaner and easier to use.
Now, instead of worrying about
inheritance or composition when you want to use a container class, you take the
template version of the container and stamp out a specific version for your
particular problem, like this:
[image: ]
The compiler does the work for you, and
you end up with exactly the container you need to do your job, rather than an
unwieldy inheritance hierarchy. In C++, the template implements the concept of a
parameterized type. Another benefit of the template approach is that the
novice programmer who may be unfamiliar or uncomfortable with inheritance can
still use canned container classes right away (as we've been doing with
vector throughout the
book).
16-3 - 
Template syntax
The template keyword tells the
compiler that the class definition that follows will manipulate one or more
unspecified types. At the time the actual class code is generated from the
template, those types must be specified so that the compiler can substitute
them.
To demonstrate the syntax, here's a
small example that produces a
bounds-checked
array:
//: C16:Array.cpp
#include "../require.h"
#include <iostream>
using namespace std;
 
template<class T>
class Array {
  enum { size = 100 };
  T A[size];
public:
  T& operator[](int index) {
    require(index >= 0 && index < size,
      "Index out of range");
    return A[index];
  }
};
 
int main() {
  Array<int> ia;
  Array<float> fa;
  for(int i = 0; i < 20; i++) {
    ia[i] = i * i;
    fa[i] = float(i) * 1.414;
  }
  for(int j = 0; j < 20; j++)
    cout << j << ": " << ia[j]
         << ", " << fa[j] << endl;
} ///:~

You can see that it looks like a normal
class except for the line
template<class T>

which says that T is the
substitution parameter, and that it represents a type name. Also, you see
T used everywhere in the class where you would normally see the specific
type the container holds.
In Array, elements are inserted
and extracted with the same function: the overloaded operator [ ]
. It
returns a reference, so it can be used on both sides of an equal sign (that is,
as both an lvalue and an
rvalue). Notice that if the index is out of
bounds, the require( ) function is used to
print a message. Since operator[] is an inline,you could
use this approach to guarantee that no array-bounds violations occur, then
remove the require( ) for the shipping code.
In main( ), you can see how
easy it is to create Arrays that hold different types of objects. When
you say
Array<int> ia;
Array<float> fa;

the compiler expands the Array
template (this is called
instantiation) twice, to
create two new generated
classes, which you can think
of as Array_int and Array_float. (Different compilers may decorate
the names in different ways.) These are classes just like the ones you would
have produced if you had performed the substitution by hand, except that the
compiler creates them for you as you define the objects ia and fa.
Also note that duplicate class
definitions
are either avoided by the compiler or merged by the
linker.
16-3-1 - 
Non-inline function definitions
Of course, there are times when
you'll want to have
non-inline
member function definitions. In this case, the compiler needs to see the
template declaration before the member function definition. Here's
the example above, modified to show the non-inline member
definition:
//: C16:Array2.cpp
// Non-inline template definition
#include "../require.h"
 
template<class T>
class Array {
  enum { size = 100 };
  T A[size];
public:
  T& operator[](int index);
};
 
template<class T>
T& Array<T>::operator[](int index) {
  require(index >= 0 && index < size,
    "Index out of range");
  return A[index];
}
 
int main() {
  Array<float> fa;
  fa[0] = 1.414;
} ///:~

Any reference to a template's class
name must be accompanied by its template argument list,
as in Array<T>::operator[]. You can imagine that internally, the
class name is being decorated with the arguments in the template argument list
to produce a unique class name identifier for each template
instantiation.

Header files
Even if you create non-inline function
definitions, you'll usually want to put all declarations and
definitions for a template into a header file. This may seem to violate the
normal header file rule of “Don't put in anything that allocates
storage,” (which prevents multiple definition errors at link time), but
template definitions are special. Anything preceded by
template<...> means the compiler won't allocate storage for
it at that point, but will instead wait until it's told to (by a template
instantiation), and that somewhere in the compiler and linker there's a
mechanism for removing multiple definitions of an
identical template. So you'll almost always put the entire template
declaration and definition in the header file, for ease of
use.
There are times when you may need to
place the template definitions in a separate cpp file to satisfy special
needs (for example, forcing template instantiations to exist in only a single
Windows dll file). Most compilers have some mechanism to allow this;
you'll have to investigate your particular compiler's documentation
to use it.
Some people feel that putting all of the
source code for your implementation in a header file makes it possible for
people to steal and modify your code if they buy a library from you. This might
be an issue, but it probably depends on the way you look at the problem: Are
they buying a product or a service? If it's a product, then you have to do
everything you can to protect it, and probably you don't want to give
source code, just compiled code. But many people see software as a service, and
even more than that, a subscription service. The customer wants your expertise,
they want you to continue maintaining this piece of reusable code so that they
don't have to - so they can focus on getting their job done.
I personally think most customers will treat you as a valuable resource and will
not want to jeopardize their relationship with you. As for the few who want to
steal rather than buy or do original work, they probably can't keep up
with you
anyway.
16-3-2 - 
IntStack as a template
Here is the container and iterator from
IntStack.cpp, implemented as a generic container class using
templates:
//: C16:StackTemplate.h
// Simple stack template
#ifndef STACKTEMPLATE_H
#define STACKTEMPLATE_H
#include "../require.h"
 
template<class T>
class StackTemplate {
  enum { ssize = 100 };
  T stack[ssize];
  int top;
public:
  StackTemplate() : top(0) {}
  void push(const T& i) {
    require(top < ssize, "Too many push()es");
    stack[top++] = i;
  }
  T pop() {
    require(top > 0, "Too many pop()s");
    return stack[--top];
  }
  int size() { return top; }
};
#endif // STACKTEMPLATE_H ///:~

Notice
that a template makes certain assumptions about the objects it is holding. For
example, StackTemplate assumes there is some sort of assignment operation
for T inside the push( ) function. You could say that a
template “implies an interface” for the types it is capable of
holding.
Another
way to say this is that templates provide a kind of weak typing mechanism
for C++, which is ordinarily a strongly-typed language. Instead of insisting
that an object be of some exact type in order to be acceptable, weak typing
requires only that the member functions that it wants to call are
available for a particular object. Thus, weakly-typed code can be applied
to any object that can accept those member function calls, and is thus much more
flexible(63).
Here's the revised example to test
the template:
//: C16:StackTemplateTest.cpp
// Test simple stack template
//{L} fibonacci
#include "fibonacci.h"
#include "StackTemplate.h"
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
 
int main() {
  StackTemplate<int> is;
  for(int i = 0; i < 20; i++)
    is.push(fibonacci(i));
  for(int k = 0; k < 20; k++)
    cout << is.pop() << endl;
  ifstream in("StackTemplateTest.cpp");
  assure(in, "StackTemplateTest.cpp");
  string line;
  StackTemplate<string> strings;
  while(getline(in, line))
    strings.push(line);
  while(strings.size() > 0)
    cout << strings.pop() << endl;
} ///:~

The only difference is in the creation of
is. Inside the template argument list you specify the type of object the
stack and iterator should hold. To demonstrate the genericness of the template,
a StackTemplate is also created to hold string. This is tested by
reading in lines from the source-code
file.
16-3-3 - 
Constants in
templates
Template arguments are not restricted to
class types; you can also use built-in types. The values of these arguments then
become compile-time constants for that particular instantiation of the template.
You can even use default values for these arguments. The following example
allows you to set the size of the Array class during instantiation, but
also provides a default value:
//: C16:Array3.cpp
// Built-in types as template arguments
#include "../require.h"
#include <iostream>
using namespace std;
 
template<class T, int size = 100>
class Array {
  T array[size];
public:
  T& operator[](int index) {
    require(index >= 0 && index < size,
      "Index out of range");
    return array[index];
  }
  int length() const { return size; }
};
 
class Number {
  float f;
public:
  Number(float ff = 0.0f) : f(ff) {}
  Number& operator=(const Number& n) {
    f = n.f;
    return *this;
  }
  operator float() const { return f; }
  friend ostream&
    operator<<(ostream& os, const Number& x) {
      return os << x.f;
  }
};
 
template<class T, int size = 20>
class Holder {
  Array<T, size>* np;
public:
  Holder() : np(0) {}
  T& operator[](int i) {
    require(0 <= i && i < size);
    if(!np) np = new Array<T, size>;
    return np->operator[](i);
  }
  int length() const { return size; }
  ~Holder() { delete np; }
};
 
int main() {
  Holder<Number> h;
  for(int i = 0; i < 20; i++)
    h[i] = i;
  for(int j = 0; j < 20; j++)
    cout << h[j] << endl;
} ///:~

As before, Array is a checked
array of objects and prevents you from indexing out of bounds. The class
Holder is much like Array except that it has a pointer to an
Array instead of an embedded object of type Array. This pointer is
not initialized in the constructor; the initialization is delayed until the
first access. This is called
lazy initialization; you
might use a technique like this if you are creating a lot of objects, but not
accessing them all, and want to save storage.
You'll notice that the size
value in both templates is never stored internally in the class, but it is used
as if it were a data member inside the member
functions.
16-4 - 
Stack and Stash as
templates
The recurring 
“ownership” problems with the Stash and Stack
container classes that have been revisited throughout this book come from the
fact that these containers haven't been able to know exactly what types
they hold. The nearest they've come is the Stack “container
of Object” that was seen at the end of Chapter 15 in
OStackTest.cpp.
If the client programmer doesn't
explicitly remove all the pointers to objects that are held in the container,
then the container should be able to correctly delete those pointers. That is to
say, the container “owns” any objects that haven't been
removed, and is thus responsible for cleaning them up. The snag has been that
cleanup requires knowing the type of the object, and creating a generic
container class requires not knowing the type of the object. With
templates, however, we can write code that doesn't know the type of the
object, and easily instantiate a new version of that container for every type
that we want to contain. The individual instantiated containers do know
the type of objects they hold and can thus call the correct destructor
(assuming, in the typical case where polymorphism is involved, that a virtual
destructor has been provided).
For the Stack this turns out to be
quite simple since all of the member functions can be reasonably
inlined:
//: C16:TStack.h
// The Stack as a template
#ifndef TSTACK_H
#define TSTACK_H
 
template<class T>
class Stack {
  struct Link {
    T* data;
    Link* next;
    Link(T* dat, Link* nxt): 
      data(dat), next(nxt) {}
  }* head;
public:
  Stack() : head(0) {}
  ~Stack(){ 
    while(head)
      delete pop();
  }
  void push(T* dat) {
    head = new Link(dat, head);
  }
  T* peek() const {
    return head ? head->data : 0; 
  }
  T* pop(){
    if(head == 0) return 0;
    T* result = head->data;
    Link* oldHead = head;
    head = head->next;
    delete oldHead;
    return result;
  }
};
#endif // TSTACK_H ///:~

If you compare this to the
OStack.h example at the end of Chapter 15, you will see that Stack
is virtually identical, except that Object has been replaced with
T. The test program is also nearly identical, except that the necessity
for multiply-inheriting from string and Object (and even the need
for Object itself) has been eliminated. Now there is no MyString
class to announce its destruction, so a small new class is added to show a
Stack container cleaning up its objects:
//: C16:TStackTest.cpp
//{T} TStackTest.cpp
#include "TStack.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
 
class X {
public:
  virtual ~X() { cout << "~X " << endl; }
};
 
int main(int argc, char* argv[]) {
  requireArgs(argc, 1); // File name is argument
  ifstream in(argv[1]);
  assure(in, argv[1]);
  Stack<string> textlines;
  string line;
  // Read file and store lines in the Stack:
  while(getline(in, line))
    textlines.push(new string(line));
  // Pop some lines from the stack:
  string* s;
  for(int i = 0; i < 10; i++) {
    if((s = (string*)textlines.pop())==0) break;
    cout << *s << endl;
    delete s; 
  } // The destructor deletes the other strings.
  // Show that correct destruction happens:
  Stack<X> xx;
  for(int j = 0; j < 10; j++)
    xx.push(new X);
} ///:~

The
destructor for X is
virtual, not because it's necessary here, but because xx could
later be used to hold objects derived from X.
Notice how easy it is to create different
kinds of Stacks for string and for X.Because of the
template, you get the best of both worlds: the ease of use of the Stack
class along with proper cleanup.
16-4-1 - 
Templatized pointer Stash
Reorganizing the PStash code into
a template isn't quite so simple because there are a number of member
functions that should not be
inlined. However, as a template
those function definitions still belong in the
header file (the compiler and
linker take care of any multiple definition problems). The code looks quite
similar to the ordinary PStash except that you'll notice the size
of the increment (used by inflate( )) has been templatized as a
non-class parameter with a default value, so that the increment size can be
modified at the point of instantiation (notice that this means that the
increment size is fixed; you may also argue that the increment size should be
changeable throughout the lifetime of the object):
//: C16:TPStash.h
#ifndef TPSTASH_H
#define TPSTASH_H
 
template<class T, int incr = 10>
class PStash {
  int quantity; // Number of storage spaces
  int next; // Next empty space
  T** storage;
  void inflate(int increase = incr);
public:
  PStash() : quantity(0), next(0), storage(0) {}
  ~PStash();
  int add(T* element);
  T* operator[](int index) const; // Fetch
  // Remove the reference from this PStash:
  T* remove(int index);
  // Number of elements in Stash:
  int count() const { return next; }
};
 
template<class T, int incr>
int PStash<T, incr>::add(T* element) {
  if(next >= quantity)
    inflate(incr);
  storage[next++] = element;
  return(next - 1); // Index number
}
 
// Ownership of remaining pointers:
template<class T, int incr>
PStash<T, incr>::~PStash() {
  for(int i = 0; i < next; i++) {
    delete storage[i]; // Null pointers OK
    storage[i] = 0; // Just to be safe
  }
  delete []storage;
}
 
template<class T, int incr>
T* PStash<T, incr>::operator[](int index) const {
  require(index >= 0,
    "PStash::operator[] index negative");
  if(index >= next)
    return 0; // To indicate the end
  require(storage[index] != 0, 
    "PStash::operator[] returned null pointer");
  // Produce pointer to desired element:
  return storage[index];
}
 
template<class T, int incr>
T* PStash<T, incr>::remove(int index) {
  // operator[] performs validity checks:
  T* v = operator[](index);
  // "Remove" the pointer:
  if(v != 0) storage[index] = 0;
  return v;
}
 
template<class T, int incr>
void PStash<T, incr>::inflate(int increase) {
  const int psz = sizeof(T*);
  T** st = new T*[quantity + increase];
  memset(st, 0, (quantity + increase) * psz);
  memcpy(st, storage, quantity * psz);
  quantity += increase;
  delete []storage; // Old storage
  storage = st; // Point to new memory
}
#endif // TPSTASH_H ///:~

The default increment size used here is
small to guarantee that calls to inflate( ) occur. This way we can
make sure it works correctly.
To test the
ownership control of the templatized PStash, the
following class will report
creations and destructions of
itself, and also guarantee that all objects that have been created were also
destroyed. AutoCounter will allow only objects of its type to be created
on the
stack:
//: C16:AutoCounter.h
#ifndef AUTOCOUNTER_H
#define AUTOCOUNTER_H
#include "../require.h"
#include <iostream>
#include <set> // Standard C++ Library container
#include <string>
 
class AutoCounter {
  static int count;
  int id;
  class CleanupCheck {
    std::set<AutoCounter*> trace;
  public:
    void add(AutoCounter* ap) {
      trace.insert(ap);
    }
    void remove(AutoCounter* ap) {
      require(trace.erase(ap) == 1,
        "Attempt to delete AutoCounter twice");
    }
    ~CleanupCheck() {
      std::cout << "~CleanupCheck()"<< std::endl;
      require(trace.size() == 0,
       "All AutoCounter objects not cleaned up");
    }
  };
  static CleanupCheck verifier;
  AutoCounter() : id(count++) {
    verifier.add(this); // Register itself
    std::cout << "created[" << id << "]" 
              << std::endl;
  }
  // Prevent assignment and copy-construction:
  AutoCounter(const AutoCounter&);
  void operator=(const AutoCounter&);
public:
  // You can only create objects with this:
  static AutoCounter* create() { 
    return new AutoCounter();
  }
  ~AutoCounter() {
    std::cout << "destroying[" << id 
              << "]" << std::endl;
    verifier.remove(this);
  }
  // Print both objects and pointers:
  friend std::ostream& operator<<(
    std::ostream& os, const AutoCounter& ac){
    return os << "AutoCounter " << ac.id;
  }
  friend std::ostream& operator<<(
    std::ostream& os, const AutoCounter* ac){
    return os << "AutoCounter " << ac->id;
  }
}; 
#endif // AUTOCOUNTER_H ///:~

The AutoCounter class does two
things. First, it sequentially numbers each instance of AutoCounter: the
value of this number is kept in id, and the number is generated using the
static data member count.
Second, and more complex, a
static instance (called verifier) of
thenested class CleanupCheck keeps track of all of the
AutoCounter objects that are created and destroyed, and reports back to
you if you don't clean all of them up (i.e. if there is a memory leak).
This behavior is accomplished using a
set
class from the Standard C++ Library, which is a wonderful example of how
well-designed templates can make life easy (you can learn about all the
containers in the Standard C++ Library in Volume 2 of this book, available
online).
The set class is templatized on
the type that it holds; here it is instantiated to hold AutoCounter
pointers. A set will allow only one instance of each distinct object to
be added; in add( ) you can see this take place with the
set::insert( ) function. insert( ) actually informs you
with its return value if you're trying to add something that's
already been added; however, since object addresses are being added we can rely
on C++'s guarantee that all objects have unique
addresses.
In remove( ),
set::erase( ) is used to remove an AutoCounter pointer from
the set. The return value tells you how many instances of the element
were removed; in our case we only expect zero or one. If the value is zero,
however, it means this object was already deleted from the set and
you're trying to delete it a second time, which is a programming error
that will be reported through
require( ).
The destructor for CleanupCheck
does a final check by making sure that the size of the set is zero
- this means that all of the objects have been properly cleaned up. If
it's not zero, you have a memory leak, which is reported through
require( ).
The constructor and destructor for
AutoCounter register and unregister themselves with the verifier
object. Notice that the constructor, copy-constructor, and assignment operator
are private, so the only way for you to create an object is with the
static create( ) member function - this is a simple example of
a factory, and it
guarantees that all objects are created on the heap, so
verifier will not get confused over assignments and
copy-constructions.
Since all of the member functions have
been inlined, the only reason for the implementation file is to contain the
static data member definitions:
//: C16:AutoCounter.cpp {O}
// Definition of static class members
#include "AutoCounter.h"
AutoCounter::CleanupCheck AutoCounter::verifier;
int AutoCounter::count = 0;
///:~

With AutoCounter in hand, we can
now test the facilities of the PStash. The following example not only
shows that the PStash destructor cleans up all the objects that it
currently owns, but it also demonstrates how the AutoCounter class
detects objects that haven't been cleaned up:
//: C16:TPStashTest.cpp
//{L} AutoCounter
#include "AutoCounter.h"
#include "TPStash.h"
#include <iostream>
#include <fstream>
using namespace std;
 
int main() {
  PStash<AutoCounter> acStash;
  for(int i = 0; i < 10; i++)
    acStash.add(AutoCounter::create());
  cout << "Removing 5 manually:" << endl;
  for(int j = 0; j < 5; j++)
    delete acStash.remove(j);
  cout << "Remove two without deleting them:"
       << endl;
  // ... to generate the cleanup error message.
  cout << acStash.remove(5) << endl;
  cout << acStash.remove(6) << endl;
  cout << "The destructor cleans up the rest:"
       << endl;
  // Repeat the test from earlier chapters: 
  ifstream in("TPStashTest.cpp");
  assure(in, "TPStashTest.cpp");
  PStash<string> stringStash;
  string line;
  while(getline(in, line))
    stringStash.add(new string(line));
  // Print out the strings:
  for(int u = 0; stringStash[u]; u++)
    cout << "stringStash[" << u << "] = "
         << *stringStash[u] << endl;
} ///:~

When AutoCounter elements 5 and 6
are removed from the PStash, they become the responsibility of the
caller, but since the caller never cleans them up they cause memory leaks, which
are then detected by AutoCounter at run time.
When you run the program, you'll
see that the error message isn't as specific as it could be. If you use
the scheme presented in AutoCounter to discover memory leaks in your own
system, you will probably want to have it print out more detailed information
about the objects that haven't been cleaned up. Volume 2 of this book
shows more sophisticated ways to do
this.
16-5 - 
Turning ownership on and off
Let's return to the ownership
problem. Containers that hold
objects by value don't usually worry about ownership because they clearly
own the objects they contain. But if your container holds pointers (which is
more common with C++, especially with polymorphism),
then it's very likely those pointers may also be used somewhere else in
the program, and you don't necessarily want to delete the object because
then the other pointers in the program would be referencing a destroyed object.
To prevent this from happening, you must consider ownership when designing and
using a container.
Many programs are much simpler than this,
and don't encounter the ownership problem: One container holds pointers to
objects that are used only by that container. In this case ownership is very
straightforward: The container owns its objects.
The best approach to handling the
ownership problem is to give the client programmer a choice. This is often
accomplished by a constructor argument that defaults to indicating ownership
(the simplest case). In addition there may be “get” and
“set” functions to view and modify the ownership of the container.
If the container has functions to remove an object, the ownership state usually
affects that removal, so you may also find options to control destruction in the
removal function. You could conceivably add ownership data for every element in
the container, so each position would know whether it needed to be destroyed;
this is a variant of reference counting,  except that
the container and not the object knows the number of references pointing to an
object.
//: C16:OwnerStack.h
// Stack with runtime conrollable ownership
#ifndef OWNERSTACK_H
#define OWNERSTACK_H
 
template<class T> class Stack {
  struct Link {
    T* data;
    Link* next;
    Link(T* dat, Link* nxt) 
      : data(dat), next(nxt) {}
  }* head;
  bool own;
public:
  Stack(bool own = true) : head(0), own(own) {}
  ~Stack();
  void push(T* dat) {
    head = new Link(dat,head);
  }
  T* peek() const { 
    return head ? head->data : 0; 
  }
  T* pop();
  bool owns() const { return own; }
  void owns(bool newownership) {
    own = newownership;
  }
  // Auto-type conversion: true if not empty:
  operator bool() const { return head != 0; }
};
 
template<class T> T* Stack<T>::pop() {
  if(head == 0) return 0;
  T* result = head->data;
  Link* oldHead = head;
  head = head->next;
  delete oldHead;
  return result;
}
 
template<class T> Stack<T>::~Stack() {
  if(!own) return;
  while(head)
    delete pop();
}
#endif // OWNERSTACK_H ///:~

The default behavior is for the container
to destroy its objects but you can change this by either modifying the
constructor argument or using the owns( ) read/write member
functions.
As with most templates you're
likely to see, the entire implementation is contained in the header file.
Here's a small test that exercises the ownership
abilities:
//: C16:OwnerStackTest.cpp
//{L} AutoCounter 
#include "AutoCounter.h"
#include "OwnerStack.h"
#include "../require.h"
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
 
int main() {
  Stack<AutoCounter> ac; // Ownership on
  Stack<AutoCounter> ac2(false); // Turn it off
  AutoCounter* ap;
  for(int i = 0; i < 10; i++) {
    ap = AutoCounter::create();
    ac.push(ap);
    if(i % 2 == 0)
      ac2.push(ap);
  }
  while(ac2)
    cout << ac2.pop() << endl;
  // No destruction necessary since
  // ac "owns" all the objects
} ///:~

The ac2 object doesn't own
the objects you put into it, thus ac is the “master”
container which takes responsibility for ownership. If, partway through the
lifetime of a container, you want to change whether a container owns its
objects, you can do so using owns( ).
It would also be possible to change the
granularity of the ownership so that it is on an object-by-object basis, but
that will probably make the solution to the ownership problem more complex than
the
problem.
16-6 - 
Holding objects by value
Actually creating a copy of the objects
inside a generic container is a complex problem if you don't have
templates. With templates, things are relatively simple - you just say
that you are holding objects rather than pointers:
//: C16:ValueStack.h
// Holding objects by value in a Stack
#ifndef VALUESTACK_H
#define VALUESTACK_H
#include "../require.h"
 
template<class T, int ssize = 100>
class Stack {
  // Default constructor performs object
  // initialization for each element in array:
  T stack[ssize];
  int top;
public:
  Stack() : top(0) {}
  // Copy-constructor copies object into array:
  void push(const T& x) {
    require(top < ssize, "Too many push()es");
    stack[top++] = x;
  }
  T peek() const { return stack[top]; }
  // Object still exists when you pop it; 
  // it just isn't available anymore:
  T pop() {
    require(top > 0, "Too many pop()s");
    return stack[--top];
  }
};
#endif // VALUESTACK_H ///:~

The copy constructor for the contained
objects does most of the work by passing and returning the objects by value.
Inside push( ), storage of the object onto the Stack array is
accomplished with T::operator=. To guarantee that it works, a class
called SelfCounter keeps track of object creations and
copy-constructions:
//: C16:SelfCounter.h
#ifndef SELFCOUNTER_H
#define SELFCOUNTER_H
#include "ValueStack.h"
#include <iostream>
 
class SelfCounter {
  static int counter;
  int id;
public:
  SelfCounter() : id(counter++) {
    std::cout << "Created: " << id << std::endl;
  }
  SelfCounter(const SelfCounter& rv) : id(rv.id){
    std::cout << "Copied: " << id << std::endl;
  }
  SelfCounter operator=(const SelfCounter& rv) {
    std::cout << "Assigned " << rv.id << " to " 
              << id << std::endl;
    return *this;
  }
  ~SelfCounter() {
    std::cout << "Destroyed: "<< id << std::endl;
  }
  friend std::ostream& operator<<( 
    std::ostream& os, const SelfCounter& sc){
    return os << "SelfCounter: " << sc.id;
  }
};
#endif // SELFCOUNTER_H ///:~
 
//: C16:SelfCounter.cpp {O}
#include "SelfCounter.h"
int SelfCounter::counter = 0; ///:~
 
//: C16:ValueStackTest.cpp
//{L} SelfCounter
#include "ValueStack.h"
#include "SelfCounter.h"
#include <iostream>
using namespace std;
 
int main() {
  Stack<SelfCounter> sc;
  for(int i = 0; i < 10; i++)
    sc.push(SelfCounter());
  // OK to peek(), result is a temporary:
  cout << sc.peek() << endl;
  for(int k = 0; k < 10; k++)
    cout << sc.pop() << endl;
} ///:~

When a Stack container is created,
the default constructor of the contained object is called for each object in the
array. You'll initially see 100 SelfCounter objects created for no
apparent reason, but this is just the array initialization. This can be a bit
expensive, but there's no way around it in a simple design like this. An
even more complex situation arises if you make the Stack more general by
allowing the size to grow dynamically, because in the implementation shown above
this would involve creating a new (larger) array, copying the old array to the
new, and destroying the old array (this is, in fact, what the Standard C++
Library vector class does).
16-7 - 
Introducing
iterators
An iterator is an object that
moves through a container of other objects and selects them one at a time,
without providing direct access to the implementation of that container.
Iterators provide a standard way to access elements, whether or not a container
provides a way to access the elements directly. You will see iterators used most
often in association with container classes, and iterators are a fundamental
concept in the design and use of the Standard C++ containers, which are fully
described in Volume 2 of this book (downloadable from
www.BruceEckel.com). An iterator is also a kind of
design pattern, which is
the subject of a chapter in Volume 2.
In many ways, an iterator is a
“smart pointer,” and in fact you'll notice that iterators
usually mimic most pointer operations. Unlike a pointer, however, the iterator
is designed to be safe, so you're much less likely to do the equivalent of
walking off the end of an array (or if you do, you find out about it more
easily).
Consider the first example in this
chapter. Here it is with a simple iterator added:
//: C16:IterIntStack.cpp
// Simple integer stack with iterators
//{L} fibonacci
#include "fibonacci.h"
#include "../require.h"
#include <iostream>
using namespace std;
 
class IntStack {
  enum { ssize = 100 };
  int stack[ssize];
  int top;
public:
  IntStack() : top(0) {}
  void push(int i) {
    require(top < ssize, "Too many push()es");
    stack[top++] = i;
  }
  int pop() {
    require(top > 0, "Too many pop()s");
    return stack[--top];
  }
  friend class IntStackIter;
};
 
// An iterator is like a "smart" pointer:
class IntStackIter {
  IntStack& s;
  int index;
public:
  IntStackIter(IntStack& is) : s(is), index(0) {}
  int operator++() { // Prefix
    require(index < s.top, 
      "iterator moved out of range");
    return s.stack[++index];
  }
  int operator++(int) { // Postfix
    require(index < s.top, 
      "iterator moved out of range");
    return s.stack[index++];
  }
};
 
int main() {
  IntStack is;
  for(int i = 0; i < 20; i++)
    is.push(fibonacci(i));
  // Traverse with an iterator:
  IntStackIter it(is);
  for(int j = 0; j < 20; j++)
    cout << it++ << endl;
} ///:~

The IntStackIter has been created
to work only with an IntStack. Notice that IntStackIter is a
friend of IntStack, which gives it access to all the
private elements of IntStack.
Like a pointer,
IntStackIter's job is to move through an IntStack and
retrieve values. In this simple example, the IntStackIter can move only
forward (using both the pre- and postfix forms of the operator++).
However, there is no boundary to the way an iterator can be defined, other than
those imposed by the constraints of the container it works with. It is perfectly
acceptable (within the limits of the underlying container) for an iterator to
move around in any way within its associated container and to cause the
contained values to be modified.
It is customary that an iterator is
created with a constructor that attaches it to a single container object, and
that the iterator is not attached to a different container during its lifetime.
(Iterators are usually small and cheap, so you can easily make another
one.)
With the iterator, you can traverse the
elements of the stack without popping them, just as a pointer can move through
the elements of an array. However, the iterator knows the underlying structure
of the stack and how to traverse the elements, so even though you are moving
through them by pretending to “increment a pointer,” what's
going on underneath is more involved. That's the key to the iterator: It
is abstracting the complicated process of moving from one container element to
the next into something that looks like a pointer. The goal is for every
iterator in your program to have the same interface so that any code that uses
the iterator doesn't care what it's pointing to - it just
knows that it can reposition all iterators the same way, so the container that
the iterator points to is unimportant. In this way you can write more generic
code. All of the containers and algorithms in the Standard C++ Library are based
on this principle of iterators.
To aid in making things more generic, it
would be nice to be able to say “every container has an associated class
called iterator,” but this will typically cause naming problems.
The solution is to add a nested
iterator class to each container (notice that in this case,
“iterator” begins with a lowercase letter so that it conforms
to the style of the Standard C++ Library). Here is IterIntStack.cpp with
a nested iterator:
//: C16:NestedIterator.cpp
// Nesting an iterator inside the container
//{L} fibonacci
#include "fibonacci.h"
#include "../require.h"
#include <iostream>
#include <string>
using namespace std;
 
class IntStack {
  enum { ssize = 100 };
  int stack[ssize];
  int top;
public:
  IntStack() : top(0) {}
  void push(int i) {
    require(top < ssize, "Too many push()es");
    stack[top++] = i;
  }
  int pop() {
    require(top > 0, "Too many pop()s");
    return stack[--top];
  }
  class iterator;
  friend class iterator;
  class iterator {
    IntStack& s;
    int index;
  public:
    iterator(IntStack& is) : s(is), index(0) {}
    // To create the "end sentinel" iterator:
    iterator(IntStack& is, bool) 
      : s(is), index(s.top) {}
    int current() const { return s.stack[index]; }
    int operator++() { // Prefix
      require(index < s.top, 
        "iterator moved out of range");
      return s.stack[++index];
    }
    int operator++(int) { // Postfix
      require(index < s.top, 
        "iterator moved out of range");
      return s.stack[index++];
    }
    // Jump an iterator forward
    iterator& operator+=(int amount) {
      require(index + amount < s.top,
        "IntStack::iterator::operator+=() "
        "tried to move out of bounds");
      index += amount;
      return *this;
    }
    // To see if you're at the end:
    bool operator==(const iterator& rv) const {
      return index == rv.index;
    }
    bool operator!=(const iterator& rv) const {
      return index != rv.index;
    }
    friend ostream& 
    operator<<(ostream& os, const iterator& it) {
      return os << it.current();
    }
  };
  iterator begin() { return iterator(*this); }
  // Create the "end sentinel":
  iterator end() { return iterator(*this, true);}
};
 
int main() {
  IntStack is;
  for(int i = 0; i < 20; i++)
    is.push(fibonacci(i));
  cout << "Traverse the whole IntStack\n";
  IntStack::iterator it = is.begin();
  while(it != is.end())
    cout << it++ << endl;
  cout << "Traverse a portion of the IntStack\n";
  IntStack::iterator 
    start = is.begin(), end = is.begin();
  start += 5, end += 15;
  cout << "start = " << start << endl;
  cout << "end = " << end << endl;
  while(start != end)
    cout << start++ << endl;
} ///:~

When making a nested friend class,
you must go through the process of first declaring the name of the class, then
declaring it as a friend, then defining the class. Otherwise, the
compiler will get confused.
Some new twists have been added to the
iterator. The current( ) member function produces the element in the
container that the iterator is currently selecting. You can “jump”
an iterator forward by an arbitrary number of elements using operator+=.
Also, you'll see two overloaded operators: == and != that
will compare one iterator with another. These can compare any two
IntStack::iterators, but theyare primarily intended as a test to
see if the iterator is at the end of a sequence in the same way that the
“real” Standard C++ Library iterators do.
The idea is that two iterators define a range, including the first element
pointed to by the first iterator and up to but not including the last
element pointed to by the second iterator. So if you want to move through the
range defined by the two iterators, you say something like
this:
  while(start != end)
  cout << start++ << endl;

where start and end are the
two iterators in the range. Note that the end iterator, which we often
refer to as the end sentinel, is not dereferenced
and is there only to tell you that you're at the end of the sequence. Thus
it represents “one past the end.”
Much of the time you'll want to
move through the entire sequence in a container, so the container needs some way
to produce the iterators indicating the beginning of the sequence and the end
sentinel. Here, as in the Standard C++ Library, these iterators are produced by
the container member functions begin( ) and end( ).
begin( ) uses the first iterator constructor that defaults to
pointing at the beginning of the container (this is the first element pushed on
the stack). However, a second constructor, used by end( ), is
necessary to create the end sentinel iterator. Being “at the
end” means pointing to the top of the stack, because top always
indicates the next available - but unused - space on the stack. This
iterator constructor takes a second argument of type bool, which
is a dummy to distinguish the two constructors.
The Fibonacci
numbers are used again to fill the IntStack in main( ), and
iterators are used to move through the whole IntStack and also
within a narrowed range of the sequence.
The next step, of course, is to make the
code general by templatizing it on the type that it holds, so that instead of
being forced to hold only ints you can hold any type:
//: C16:IterStackTemplate.h
// Simple stack template with nested iterator
#ifndef ITERSTACKTEMPLATE_H
#define ITERSTACKTEMPLATE_H
#include "../require.h"
#include <iostream>
 
template<class T, int ssize = 100>
class StackTemplate {
  T stack[ssize];
  int top;
public:
  StackTemplate() : top(0) {}
  void push(const T& i) {
    require(top < ssize, "Too many push()es");
    stack[top++] = i;
  }
  T pop() {
    require(top > 0, "Too many pop()s");
    return stack[--top];
  }
  class iterator; // Declaration required
  friend class iterator; // Make it a friend
  class iterator { // Now define it
    StackTemplate& s;
    int index;
  public:
    iterator(StackTemplate& st): s(st),index(0){}
    // To create the "end sentinel" iterator:
    iterator(StackTemplate& st, bool) 
      : s(st), index(s.top) {}
    T operator*() const { return s.stack[index];}
    T operator++() { // Prefix form
      require(index < s.top, 
        "iterator moved out of range");
      return s.stack[++index];
    }
    T operator++(int) { // Postfix form
      require(index < s.top, 
        "iterator moved out of range");
      return s.stack[index++];
    }
    // Jump an iterator forward
    iterator& operator+=(int amount) {
      require(index + amount < s.top,
        " StackTemplate::iterator::operator+=() "
        "tried to move out of bounds");
      index += amount;
      return *this;
    }
    // To see if you're at the end:
    bool operator==(const iterator& rv) const {
      return index == rv.index;
    }
    bool operator!=(const iterator& rv) const {
      return index != rv.index;
    }
    friend std::ostream& operator<<(
      std::ostream& os, const iterator& it) {
      return os << *it;
    }
  };
  iterator begin() { return iterator(*this); }
  // Create the "end sentinel":
  iterator end() { return iterator(*this, true);}
};
#endif // ITERSTACKTEMPLATE_H ///:~

You can see that the transformation from
a regular class to a template is reasonably transparent. This approach of
first creating and debugging an ordinary class, then making it into a template,
is generally considered to be easier than creating the template from
scratch.
Notice that instead of just
saying:
friend iterator; // Make it a friend

This code has:
friend class iterator; // Make it a friend

This is important because the name
“iterator” is already in scope, from an included
file.
Instead
of the current( ) member function, the iterator has an
operator* to select the current element, which makes the iterator
look more like a pointer and is a common practice.
Here's the revised example to test
the template:
//: C16:IterStackTemplateTest.cpp
//{L} fibonacci
#include "fibonacci.h"
#include "IterStackTemplate.h"
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
 
int main() {
  StackTemplate<int> is;
  for(int i = 0; i < 20; i++)
    is.push(fibonacci(i));
  // Traverse with an iterator:
  cout << "Traverse the whole StackTemplate\n";
  StackTemplate<int>::iterator it = is.begin();
  while(it != is.end())
    cout << it++ << endl;
  cout << "Traverse a portion\n";
  StackTemplate<int>::iterator 
    start = is.begin(), end = is.begin();
  start += 5, end += 15;
  cout << "start = " << start << endl;
  cout << "end = " << end << endl;
  while(start != end)
    cout << start++ << endl;
  ifstream in("IterStackTemplateTest.cpp");
  assure(in, "IterStackTemplateTest.cpp");
  string line;
  StackTemplate<string> strings;
  while(getline(in, line))
    strings.push(line);
  StackTemplate<string>::iterator 
    sb = strings.begin(), se = strings.end();
  while(sb != se)
    cout << sb++ << endl;
} ///:~

The
first use of the iterator just marches it from beginning to end (and shows that
the end sentinel works properly). In the second usage, you can see how iterators
allow you to easily specify a range of elements (the containers and iterators in
the Standard C++ Library use this concept of ranges almost everywhere). The
overloaded operator+= moves the start and end iterators to
positions in the middle of the range of the elements in is, and these
elements are printed out. Notice in the output that the end sentinel is
not included in the range, thus it can be one past the end of the range
to let you know you've passed the end - but you don't
dereference the end sentinel, or else you can end up dereferencing a null
pointer. (I've put guarding in the StackTemplate::iterator, but in
the Standard C++ Library containers and iterators there is no such code -
for efficiency reasons - so you must pay attention.)
Lastly, to verify that the
StackTemplate works with class objects, one is instantiated for
string and filled with the lines from the source-code file, which are
then printed
out.
16-7-1 - 
Stack with iterators
We can repeat the process with the
dynamically-sized Stack class that has been used as an example throughout
the book. Here's the Stack class with a nested iterator folded into
the mix:
//: C16:TStack2.h
// Templatized Stack with nested iterator
#ifndef TSTACK2_H
#define TSTACK2_H
 
template<class T> class Stack {
  struct Link {
    T* data;
    Link* next;
    Link(T* dat, Link* nxt)
      : data(dat), next(nxt) {}
  }* head;
public:
  Stack() : head(0) {}
  ~Stack();
  void push(T* dat) {
    head = new Link(dat, head);
  }
  T* peek() const { 
    return head ? head->data : 0;
  }
  T* pop();
  // Nested iterator class:
  class iterator; // Declaration required
  friend class iterator; // Make it a friend
  class iterator { // Now define it
    Stack::Link* p;
  public:
    iterator(const Stack<T>& tl) : p(tl.head) {}
    // Copy-constructor:
    iterator(const iterator& tl) : p(tl.p) {}
    // The end sentinel iterator:
    iterator() : p(0) {}
    // operator++ returns boolean indicating end:
    bool operator++() {
      if(p->next)
        p = p->next;
      else p = 0; // Indicates end of list
      return bool(p);
    }
    bool operator++(int) { return operator++(); }
    T* current() const {
      if(!p) return 0;
      return p->data;
    }
    // Pointer dereference operator:
    T* operator->() const { 
      require(p != 0, 
        "PStack::iterator::operator->returns 0");
      return current(); 
    }
    T* operator*() const { return current(); }
    // bool conversion for conditional test:
    operator bool() const { return bool(p); }
    // Comparison to test for end:
    bool operator==(const iterator&) const {
      return p == 0;
    }
    bool operator!=(const iterator&) const {
      return p != 0;
    }
  };
  iterator begin() const { 
    return iterator(*this); 
  }
  iterator end() const { return iterator(); }
};
 
template<class T> Stack<T>::~Stack() {
  while(head)
    delete pop();
}
 
template<class T> T* Stack<T>::pop() {
  if(head == 0) return 0;
  T* result = head->data;
  Link* oldHead = head;
  head = head->next;
  delete oldHead;
  return result;
}
#endif // TSTACK2_H ///:~

You'll also
notice the class has been changed to support ownership, which works now because
the class knows the exact type (or at least the base type, which will work
assuming virtual destructors are used). The default is for the container to
destroy its objects but you are responsible for any pointers that you
pop( ).
The iterator is
simple, and physically very small - the size of a single pointer. When you
create an iterator, it's initialized to the head of the linked
list, and you can only increment it forward through the list. If you want to
start over at the beginning, you create a new iterator, and if you want to
remember a spot in the list, you create a new iterator from the existing
iterator pointing at that spot (using the iterator's
copy-constructor).
To call functions for the object referred
to by the iterator, you can use the current( ) function, the
operator*,or the
pointer dereference
operator-> (a common
sight in iterators). The latter has an implementation that looks
identical to current( ) because it returns a pointer to the current
object, but is different because the pointer dereference operator performs the
extra levels of dereferencing (see Chapter 12).
The iterator class follows the
form you saw in the prior example. class iterator is nested inside the
container class, it contains constructors to create both an iterator pointing at
an element in the container and an “end sentinel” iterator, and the
container class has the begin( ) and end( ) methods to
produce these iterators. (When you learn the more about the Standard C++
Library, you'll see that the names iterator, begin( ),
and end( ) that are used here were clearly lifted standard container
classes. At the end of this chapter, you'll see that this enables these
container classes to be used as if they were Standard C++ Library container
classes.)
The entire implementation is contained in
the header file, so there's no separate cpp file. Here's a
small test that exercises the iterator:
//: C16:TStack2Test.cpp
#include "TStack2.h"
#include "../require.h"
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
 
int main() {
  ifstream file("TStack2Test.cpp");
  assure(file, "TStack2Test.cpp");
  Stack<string> textlines;
  // Read file and store lines in the Stack:
  string line;
  while(getline(file, line))
    textlines.push(new string(line));
  int i = 0;
  // Use iterator to print lines from the list:
  Stack<string>::iterator it = textlines.begin();
  Stack<string>::iterator* it2 = 0;
  while(it != textlines.end()) {
    cout << it->c_str() << endl;
    it++;
    if(++i == 10) // Remember 10th line
      it2 = new Stack<string>::iterator(it);
  }
  cout << (*it2)->c_str() << endl;
  delete it2;
} ///:~

A Stack is instantiated to hold
string objects and filled with lines from a file. Then an iterator is
created and used to move through the sequence. The tenth line is remembered by
copy-constructing a second iterator from the first; later this line is printed
and the iterator - created dynamically - is destroyed. Here, dynamic
object creation is used to control the lifetime of the
object.
16-7-2 - 
PStash with iterators
For most container classes it makes sense
to have an iterator. Here's an iterator added to the PStash
class:
//: C16:TPStash2.h
// Templatized PStash with nested iterator
#ifndef TPSTASH2_H
#define TPSTASH2_H
#include "../require.h"
#include <cstdlib>
 
template<class T, int incr = 20>
class PStash {
  int quantity;
  int next;
  T** storage;
  void inflate(int increase = incr);
public:
  PStash() : quantity(0), storage(0), next(0) {}
  ~PStash();
  int add(T* element);
  T* operator[](int index) const;
  T* remove(int index);
  int count() const { return next; }
  // Nested iterator class:
  class iterator; // Declaration required
  friend class iterator; // Make it a friend
  class iterator { // Now define it
    PStash& ps;
    int index;
  public:
    iterator(PStash& pStash)
      : ps(pStash), index(0) {}
    // To create the end sentinel:
    iterator(PStash& pStash, bool)
      : ps(pStash), index(ps.next) {}
    // Copy-constructor:
    iterator(const iterator& rv)
      : ps(rv.ps), index(rv.index) {}
    iterator& operator=(const iterator& rv) {
      ps = rv.ps;
      index = rv.index;
      return *this;
    }
    iterator& operator++() {
      require(++index <= ps.next,
        "PStash::iterator::operator++ "
        "moves index out of bounds");
      return *this;
    }
    iterator& operator++(int) {
      return operator++();
    }
    iterator& operator--() {
      require(--index >= 0,
        "PStash::iterator::operator-- "
        "moves index out of bounds");
      return *this;
    }
    iterator& operator--(int) { 
      return operator--();
    }
    // Jump interator forward or backward:
    iterator& operator+=(int amount) {
      require(index + amount < ps.next && 
        index + amount >= 0, 
        "PStash::iterator::operator+= "
        "attempt to index out of bounds");
      index += amount;
      return *this;
    }
    iterator& operator-=(int amount) {
      require(index - amount < ps.next && 
        index - amount >= 0, 
        "PStash::iterator::operator-= "
        "attempt to index out of bounds");
      index -= amount;
      return *this;
    }
    // Create a new iterator that's moved forward
    iterator operator+(int amount) const {
      iterator ret(*this);
      ret += amount; // op+= does bounds check
      return ret;
    }
    T* current() const {
      return ps.storage[index];
    }
    T* operator*() const { return current(); }
    T* operator->() const { 
      require(ps.storage[index] != 0, 
        "PStash::iterator::operator->returns 0");
      return current(); 
    }
    // Remove the current element:
    T* remove(){
      return ps.remove(index);
    }
    // Comparison tests for end:
    bool operator==(const iterator& rv) const {
      return index == rv.index;
    }
    bool operator!=(const iterator& rv) const {
      return index != rv.index;
    }
  };
  iterator begin() { return iterator(*this); }
  iterator end() { return iterator(*this, true);}
};
 
// Destruction of contained objects:
template<class T, int incr>
PStash<T, incr>::~PStash() {
  for(int i = 0; i < next; i++) {
    delete storage[i]; // Null pointers OK
    storage[i] = 0; // Just to be safe
  }
  delete []storage;
}
 
template<class T, int incr>
int PStash<T, incr>::add(T* element) {
  if(next >= quantity)
    inflate();
  storage[next++] = element;
  return(next - 1); // Index number
}
 
template<class T, int incr> inline
T* PStash<T, incr>::operator[](int index) const {
  require(index >= 0,
    "PStash::operator[] index negative");
  if(index >= next)
    return 0; // To indicate the end
  require(storage[index] != 0, 
    "PStash::operator[] returned null pointer");
  return storage[index];
}
 
template<class T, int incr>
T* PStash<T, incr>::remove(int index) {
  // operator[] performs validity checks:
  T* v = operator[](index);
  // "Remove" the pointer:
  storage[index] = 0;
  return v;
}
 
template<class T, int incr>
void PStash<T, incr>::inflate(int increase) {
  const int tsz = sizeof(T*);
  T** st = new T*[quantity + increase];
  memset(st, 0, (quantity + increase) * tsz);
  memcpy(st, storage, quantity * tsz);
  quantity += increase;
  delete []storage; // Old storage
  storage = st; // Point to new memory
}
#endif // TPSTASH2_H ///:~

Most of this file is a fairly
straightforward translation of both the previous PStash and the nested
iterator into a template. This time, however, the operators return
references to the current iterator, which is the more typical and flexible
approach to take.
The destructor calls delete for
all contained pointers, and because the type is captured by the template,proper destruction will take place. You should be aware that if the
container holds pointers to a base-class type, that type should have a
virtual destructor to
ensure proper cleanup of derived objects whose addresses have been upcast when
placing them in the container.
The PStash::iterator follows the
iterator model of bonding to a single container object for its lifetime. In
addition, the copy-constructor allows you to make a new iterator pointing at the
same location as the existing iterator that you create it from, effectively
making a bookmark into the container. The operator+= and
operator-= member functions allow you to move an iterator by a number of
spots, while respecting the boundaries of the container. The overloaded
increment and decrement operators move the iterator by one place. The
operator+ produces a new iterator that's moved forward by the
amount of the addend. As in the previous example, the pointer dereference
operators are used to operate on the element the iterator is referring to, and
remove( ) destroys the current object by calling the
container's remove( ).
The same kind of code as before (a
la the Standard C++ Library containers) is used for creating the
end sentinel: a second
constructor, the container's end( ) member function, and
operator== and operator!= for comparison.
The following example creates and tests
two different kinds of Stash objects, one for a new class called
Int that announces its construction and destruction and one that holds
objects of the Standard library string class.
//: C16:TPStash2Test.cpp
#include "TPStash2.h"
#include "../require.h"
#include <iostream>
#include <vector>
#include <string>
using namespace std;
 
class Int {
  int i;
public:
  Int(int ii = 0) : i(ii) {
    cout << ">" << i << ' ';
  }
  ~Int() { cout << "~" << i << ' '; }
  operator int() const { return i; }
  friend ostream&
    operator<<(ostream& os, const Int& x) {
      return os << "Int: " << x.i;
  }
  friend ostream&
    operator<<(ostream& os, const Int* x) {
      return os << "Int: " << x->i;
  }
};
 
int main() {
  { // To force destructor call
    PStash<Int> ints;
    for(int i = 0; i < 30; i++)
      ints.add(new Int(i));
    cout << endl;
    PStash<Int>::iterator it = ints.begin();
    it += 5;
    PStash<Int>::iterator it2 = it + 10;
    for(; it != it2; it++)
      delete it.remove(); // Default removal
    cout << endl;
    for(it = ints.begin();it != ints.end();it++)
      if(*it) // Remove() causes "holes"
        cout << *it << endl;
  } // "ints" destructor called here
  cout << "\n-------------------\n";  
  ifstream in("TPStash2Test.cpp");
  assure(in, "TPStash2Test.cpp");
  // Instantiate for String:
  PStash<string> strings;
  string line;
  while(getline(in, line))
    strings.add(new string(line));
  PStash<string>::iterator sit = strings.begin();
  for(; sit != strings.end(); sit++)
    cout << **sit << endl;
  sit = strings.begin();
  int n = 26;
  sit += n;
  for(; sit != strings.end(); sit++)
    cout << n++ << ": " << **sit << endl;
} ///:~

For convenience, Int has an
associated ostream operator<< for both an Int& and an
Int*.
The first block of code in
main( ) is surrounded by braces to force the destruction of the
PStash<Int> and thus the automatic cleanup by that destructor. A
range of elements is removed and deleted by hand to show that the PStash
cleans up the rest.
For both instances of PStash,an iterator is created and used to move through the container. Notice the
elegance produced by using these constructs; you aren't assailed with the
implementation details of using an array. You tell the container and iterator
objects what to do, not how. This makes the solution easier to
conceptualize, to build, and to
modify.
16-8 - 
Why iterators?
Up until now you've seen the
mechanics of iterators, but understanding why they are so important takes a more
complex example.
It's
common to see polymorphism,
dynamic object creation, and
containers used together in a true object-oriented program. Containers and
dynamic object creation solve the problem of not knowing how many or what type
of objects you'll need. And if the container is configured to hold
pointers to base-class objects, an upcast occurs every
time you put a derived-class pointer into the container (with the associated
code organization and extensibility benefits). As the final code in Volume 1 of
this book, this example will also pull together various aspects of everything
you've learned so far - if you can follow this example, then
you're ready for Volume 2.
Suppose you are creating a program that
allows the user to edit and produce different kinds of drawings. Each drawing is
an object that contains a collection of Shape objects:
//: C16:Shape.h
#ifndef SHAPE_H
#define SHAPE_H
#include <iostream>
#include <string>
 
class Shape {
public:
  virtual void draw() = 0;
  virtual void erase() = 0;
  virtual ~Shape() {}
};
 
class Circle : public Shape {
public:
  Circle() {}
  ~Circle() { std::cout << "Circle::~Circle\n"; }
  void draw() { std::cout << "Circle::draw\n";}
  void erase() { std::cout << "Circle::erase\n";}
};
 
class Square : public Shape {
public:
  Square() {}
  ~Square() { std::cout << "Square::~Square\n"; }
  void draw() { std::cout << "Square::draw\n";}
  void erase() { std::cout << "Square::erase\n";}
};
 
class Line : public Shape {
public:
  Line() {}
  ~Line() { std::cout << "Line::~Line\n"; }
  void draw() { std::cout << "Line::draw\n";}
  void erase() { std::cout << "Line::erase\n";}
};
#endif // SHAPE_H ///:~

This uses the classic structure of
virtual functions in the base class that are overridden in the derived class.
Notice that the Shape class includes a virtual
destructor, something you should
automatically add to any class with virtual functions. If a container
holds pointers or references to Shape objects, then when the
virtual destructors are called for those objects everything will be
properly cleaned up.
Each different type of drawing in the
following example makes use of a different kind of templatized container class:
the PStash and Stack that have been defined in this chapter, and
the vector class from the Standard C++ Library.
The “use”' of the containers is extremely simple, and in
general inheritance might not be
the best approach (composition could make more sense), but in this case
inheritance is a simple approach and it doesn't detract from the point
made in the example.
//: C16:Drawing.cpp
#include <vector> // Uses Standard vector too!
#include "TPStash2.h"
#include "TStack2.h"
#include "Shape.h"
using namespace std;
 
// A Drawing is primarily a container of Shapes:
class Drawing : public PStash<Shape> {
public:
  ~Drawing() { cout << "~Drawing" << endl; }
};
 
// A Plan is a different container of Shapes:
class Plan : public Stack<Shape> {
public:
  ~Plan() { cout << "~Plan" << endl; }
};
 
// A Schematic is a different container of Shapes:
class Schematic : public vector<Shape*> {
public:
  ~Schematic() { cout << "~Schematic" << endl; }
};
 
// A function template:
template<class Iter>
void drawAll(Iter start, Iter end) {
  while(start != end) {
    (*start)->draw();
    start++;
  }
}
 
int main() {
  // Each type of container has 
  // a different interface:
  Drawing d;
  d.add(new Circle);
  d.add(new Square);
  d.add(new Line);
  Plan p;
  p.push(new Line);
  p.push(new Square);
  p.push(new Circle);
  Schematic s;
  s.push_back(new Square);
  s.push_back(new Circle);
  s.push_back(new Line);
  Shape* sarray[] = { 
    new Circle, new Square, new Line 
  };
  // The iterators and the template function
  // allow them to be treated generically:
  cout << "Drawing d:" << endl;
  drawAll(d.begin(), d.end());
  cout << "Plan p:" << endl;
  drawAll(p.begin(), p.end());
  cout << "Schematic s:" << endl;
  drawAll(s.begin(), s.end());
  cout << "Array sarray:" << endl;
  // Even works with array pointers:
  drawAll(sarray, 
    sarray + sizeof(sarray)/sizeof(*sarray));
  cout << "End of main" << endl;
} ///:~

The different types of containers all
hold pointers to Shape and pointers to upcast objects of classes derived
from Shape. However, because of polymorphism, the
proper behavior still occurs when the virtual functions
are called.
Note that sarray,the array
of Shape*, can also be thought of as a
container.
16-8-1 - 
Function templates
In drawAll( ) you see
something new. So far in this chapter, we have been using only
class templates, which
instantiate new classes based on one or more type parameters. However, you can
as easily create function
templates, which create new functions based on type parameters. The reason
you create a function template is the same reason you use for a class template:
You're trying to create generic code, and you do this by delaying the
specification of one or more types. You just want to say that these type
parameters support certain operations, not exactly what types they
are.
The
function template drawAll( ) can be thought of as an
algorithm (and this is what most of the function templates in the
Standard C++ Library are called). It just says how to do something given
iterators describing a range of elements, as long as these iterators can be
dereferenced, incremented, and compared. These are exactly the kind of iterators
we have been developing in this chapter, and also - not coincidentally
- the kind of iterators that are produced by the containers in the
Standard C++ Library, evidenced by the use of vector in this example.

We'd also like
drawAll( ) to be a generic algorithm,
so that the containers can be any type at all and we don't have to write a
new version of the algorithm for each different type of container. Here's
where function templates are essential, because they automatically generate the
specific code for each different type of container. But without the extra
indirection provided by the iterators, this genericness wouldn't be
possible. That's why iterators are important; they allow you to write
general-purpose code that involves containers without knowing the underlying
structure of the container. (Notice that, in C++, iterators and generic
algorithms require function templates in order to work.)
You can see the proof of this in
main( ), since drawAll( ) works unchanged with each
different type of container. And even more interesting, drawAll( )
also works with pointers to the beginning and end of the array sarray.
This ability to treat arrays as containers is integral to the design of the
Standard C++ Library, whose algorithms look much like
drawAll( ).
Because container class
templates
are rarely subject to the inheritance and upcasting you see with
“ordinary” classes, you'll almost never see virtual
functions in container classes. Container class reuse is implemented with
templates, not with
inheritance.
16-9 - 
Summary
Container classes are an essential part
of object-oriented programming. They are another way to simplify and hide the
details of a program and to speed the process of program development. In
addition, they provide a great deal of safety and flexibility by replacing the
primitive arrays and relatively crude data structure techniques found in
C.
Because the client programmer needs
containers, it's essential that they be easy to use. This is where the
template comes in. With templates the syntax for source-code reuse (as
opposed to object-code reuse provided by inheritance and composition) becomes
trivial enough for the novice user. In fact, reusing code with templates is
notably easier than inheritance and composition.
Although you've learned about
creating container and iterator classes in this book, in practice it's
much more expedient to learn the containers and iterators in the Standard C++
Library, since you can expect them to be available with every compiler. As you
will see in Volume 2 of this book (downloadable from www.BruceEckel.com),
the containers and algorithms in the Standard C++ Library will virtually always
fulfill your needs so you don't have to create new ones
yourself.
The issues involved with container-class
design have been touched upon in this chapter, but you may have gathered that
they can go much further. A complicated container-class library may cover all
sorts of additional issues, including multithreading, persistence and garbage
collection.
16-10 - 
Exercises
Solutions to selected exercises
can be found in the electronic document The Thinking in C++ Annotated
Solution Guide, available for a small fee from
www.BruceEckel.com.
		Implement the inheritance
hierarchy in the OShape diagram in this
chapter.
		Modify the
result of Exercise 1 from Chapter 15 to use the  Stack and iterator
in TStack2.h instead of an array of Shape pointers. Add
destructors to the class hierarchy so you can see that the Shape objects
are destroyed when the Stack goes out of
scope.
		Modify
TPStash.h so that the increment value used by inflate( ) can
be changed throughout the lifetime of a particular container
object.
		Modify
TPStash.h so that the increment value used by inflate( )
automatically resizes itself to reduce the number of times it needs to be
called. For example, each time it is called it could double the increment value
for use in the next call. Demonstrate this functionality by reporting whenever
an inflate( ) is called, and write test code in
main( ).
		Templatize
the fibonacci( ) function on the type of value that it produces (so
it can produce long, float, etc. instead of just
int).
		Using
the Standard C++ Library vector as an underlying implementation, create a
Set template class that accepts only one of each type of object that you
put into it. Make a nested iterator class that supports the “end
sentinel” concept in this chapter. Write test code for your Set in
main( ), and then substitute the Standard C++ Library set
template to verify that the behavior is
correct.
		Modify
AutoCounter.h so that it can be used as a member object inside any class
whose creation and destruction you want to trace. Add a string member to
hold the name of the class. Test this tool inside a class of your
own.
		Create a
version of OwnerStack.h that uses a Standard C++ Library vector as
its underlying implementation. You may need to look up some of the member
functions of vector in order to do this (or just look at the
<vector> header
file).
		Modify
ValueStack.h so that it dynamically expands as you push( )
more objects and it runs out of space. Change ValueStackTest.cpp to test
the new
functionality.
		Repeat
Exercise 9 but use a Standard C++ Library vector as the internal
implementation of the ValueStack. Notice how much easier this is.

		Modify
ValueStackTest.cpp so that it uses a Standard C++ Library vector
instead of a Stack in main( ). Notice the run-time behavior: Does
the vector automatically create a bunch of default objects when it is
created?
		Modify
TStack2.h so that it uses a Standard C++ Library vector as its
underlying implementation. Make sure that you don't change the interface,
so that TStack2Test.cpp works
unchanged.
		Repeat
Exercise 12 using a Standard C++ Library stack instead of a vector
(you may need to look up information about the stack, or hunt through the
<stack> header
file).
		Modify
TPStash2.h so that it uses a Standard C++ Library vector as its
underlying implementation. Make sure that you don't change the interface,
so that TPStash2Test.cpp works
unchanged.
		In
IterIntStack.cpp, modify IntStackIter to give it an “end
sentinel” constructor, and add operator== and operator!=. In
main( ), use an iterator to move through the elements of the
container until you reach the end
sentinel.
		Using
TStack2.h, TPStash2.h, and Shape.h, instantiate
Stack and PStash containers for Shape*, fill them each with
an assortment of upcast Shape pointers, then use iterators to move
through each container and call draw( ) for each
object.
		Templatize
the Int class in TPStash2Test.cpp so that it holds any type of
object (feel free to change the name of the class to something more
appropriate).
		Templatize
the IntArray class in IostreamOperatorOverloading.cpp from Chapter
12, templatizing both the type of object that is contained and the size of the
internal array.
		Turn
ObjContainer in NestedSmartPointer.cpp from Chapter 12 into a
template. Test it with two different
classes.
		Modify
C15:OStack.h and C15:OStackTest.cpp by
templatizing class Stack so that it automatically
multiply inherits from the contained class and from Object. The generated
Stack should accept and produce only pointers of the contained
type.
		Repeat
Exercise 20 using vector instead of
Stack.
		Inherit
a class StringVector from vector<void*> and redefine the
push_back( ) and operator[] member functions to accept and
produce only string* (and perform the proper casting). Now create a
template that will automatically make a container class to do the same thing for
pointers to any type. This technique is often used to reduce code bloat from too
many template
instantiations.
		In
TPStash2.h, add and test an operator- to PStash::iterator,
following the logic of
operator+.
		In
Drawing.cpp, add and test a function template to call
erase( ) member
functions.
		(Advanced)
Modify the Stack class in TStack2.h to allow full granularity of
ownership: Add a flag to each link indicating whether that link owns the object
it points to, and support this information in the push( ) function
and destructor. Add member functions to read and change the ownership for each
link.
		(Advanced)
Modify PointerToMemberOperator.cpp from Chapter 12 so that the
FunctionObject and operator->* are templatized to work with any
return type (for operator->*, you'll have to use member
templates, described in Volume 2). Add and test support for zero, one and
two arguments in Dog member
functions.


17 - 
A: Coding Style
This appendix is not about
indenting and placement of parentheses and curly braces, although that will be
mentioned. It is about the general guidelines used in

this book for organizing the code
listings.
Although many of these issues have been
introduced throughout the book, this appendix appears at the end so it can be
assumed that every topic is fair game, and if you don't understand
something you can look it up in the appropriate section.
All the decisions about coding style in
this book have been deliberately considered and made, sometimes over a period of
years. Of course, everyone has their reasons for organizing code the way they
do, and I'm just trying to tell you how I arrived at mine and the
constraints and environmental factors that brought me to those
decisions.
General
In the text of this book, identifiers
(function, variable, and class names) are set in bold. Most keywords will
also be set in bold, except for those keywords that are used so much that the
bolding can become tedious, such as “class” and
“virtual.”
I use a particular coding style for the
examples in this book. It was developed over a number of years, and was
partially inspired by Bjarne Stroustrup's style in
his original The C++ Programming
Language.(64)
The subject of formatting style is good for hours of hot debate, so I'll
just say I'm not trying to dictate correct style via my examples; I have
my own motivation for using the style that I do. Because C++ is a free-form
programming language, you can continue to use whatever style you're
comfortable with.
That said, I will note that it is
important to have a consistent formatting style within a project. If you search
the Internet, you will find a number of tools that can be used to reformat all
the code in your project to achieve this valuable consistency.
The programs in this book are files that
are automatically extracted from the text of the book, which allows them to be
tested to ensure that they work correctly. Thus, the code files printed in the
book should all work without compile-time errors when compiled with an
implementation that conforms to Standard C++ (note that not all compilers
support all language features). The errors that should cause compile-time
error messages are commented out with the comment //! so they can be
easily discovered and tested using automatic means. Errors discovered and
reported to the author will appear first in the electronic version of the book
(at www.BruceEckel.com) and later in updates of the
book.
One of the standards in this book is that
all programs will compile and link without errors (although they will sometimes
cause warnings). To this end, some of the programs, which demonstrate only a
coding example and don't represent stand-alone programs, will have empty
main( ) functions, like this
int main() {}

This allows the linker to complete
without an error. 
The standard for main( ) is
to return an int, but Standard C++ states that if there is no
return statement inside main( ), the compiler will
automatically generate code to return 0. This option (no return
statement in main( ))will be used in this book (some
compilers may still generate warnings for this, but those are not compliant with
Standard C++).
File names
In
C, it has been traditional to name header files (containing declarations) with
an extension of .h and implementation files (that cause storage to be
allocated and code to be generated) with an extension of .c. C++ went
through an evolution. It was first developed on Unix, where the operating system
was aware of upper and lower case in file names. The original file names were
simply capitalized versions of the C extensions: .H and .C. This
of course didn't work for operating systems that didn't distinguish
upper and lower case, such as DOS. DOS C++ vendors used extensions of hxx
and cxx for header files and implementation files, respectively, or
hpp and cpp. Later, someone figured out that the only reason you
needed a different extension for a file was so the compiler could determine
whether to compile it as a C or C++ file. Because the compiler never compiled
header files directly, only the implementation file extension needed to be
changed. The custom, across virtually all systems, has now become to use
cpp for implementation files and h for header files. Note that
when including Standard C++ header files, the option of having no file name
extension is used, i.e.: #include <iostream>.
Begin and end comment
tags
A
very important issue with this book is that all code that you see in the book
must be verified to be correct (with at least one compiler). This is
accomplished by automatically extracting the files from the book. To facilitate
this, all code listings that are meant to be compiled (as opposed to code
fragments, of which there are few) have comment tags at the beginning and end.
These tags are used by the code-extraction tool ExtractCode.cpp in Volume
2 of this book (which you can find on the Web site www.BruceEckel.com) to
pull each code listing out of the plain-ASCII text version of this
book.
The end-listing tag simply tells
ExtractCode.cpp that it's the end of the listing, but the
begin-listing tag is followed by information about what subdirectory the file
belongs in (generally organized by chapters, so a file that belongs in Chapter 8
would have a tag of C08), followed by a colon and the name of the listing
file.
Because ExtractCode.cpp also
creates a makefile for each subdirectory,
information about how a program is made and the command-line used to test it is
also incorporated into the listings. If a program is stand-alone (it
doesn't need to be linked with anything else) it has no extra information.
This is also true for header files. However, if it doesn't contain a
main( ) and is meant to be linked with something else, then it has
an {O} after the file name. If this listing is meant to be the main
program but needs to be linked with other components, there's a separate
line that begins with //{L} and continues with all the files that need to
be linked (without extensions, since those can vary from platform to
platform).
You can find examples throughout the
book.
If a file should be extracted but the
begin- and end-tags should not be included in the extracted file (for example,
if it's a file of test data) then the begin-tag is immediately followed by
a ‘!'.
Parentheses, braces, and
indentation
You may notice the formatting style in
this book is different from many traditional C styles. Of course, everyone
thinks their own style is the most rational. However, the style used here has a
simple logic behind it, which will be presented here mixed in with ideas on why
some of the other styles developed.
The formatting style is motivated by one
thing: presentation, both in print and in live seminars. You may feel your needs
are different because you don't make a lot of presentations. However,
working code is read much more than it is written, and so it should be easy for
the reader to perceive. My two most important criteria are
“scannability” (how easy it is for the reader to grasp the meaning
of a single line) and the number of lines that can fit on a page. This latter
may sound funny, but when you are giving a live presentation, it's very
distracting for the audience if the presenter must shuffle back and forth
between slides, and a few wasted lines can cause this.
Everyone seems to agree that code inside
braces should be indented. What people don't agree on - and the
place where there's the most inconsistency within formatting styles
- is this: Where does the opening brace go? This one question, I think, is
what causes such variations among coding styles (For an enumeration of coding
styles, see C++ Programming Guidelines, by Tom Plum and
Dan Saks, Plum Hall 1991.) I'll try to convince
you that many of today's coding styles come from pre-Standard C
constraints (before function prototypes) and are thus inappropriate
now.
First, my answer to that key question:
the opening brace should always go on the same line as the
“precursor” (by which I mean “whatever the body is about: a
class, function, object definition, if statement, etc.”). This is a
single, consistent rule I apply to all of the code I write, and it makes
formatting much simpler. It makes the “scannability” easier -
when you look at this line:
int func(int a);

you know, by the semicolon at the end of
the line, that this is a declaration and it goes no further, but when you see
the line:
int func(int a) {

you immediately know it's a
definition because the line finishes with an opening brace, not a semicolon. By
using this approach, there's no difference in where you place the opening
parenthesis for a multi-line definition:
int func(int a) {
  int b = a + 1;
  return b * 2;
}

and for a single-line definition that is
often used for inlines:
int func(int a) { return (a + 1) * 2; }

Similarly, for a class:
class Thing;

is a class name declaration,
and
class Thing {

is a class definition. You can tell by
looking at the single line in all cases whether it's a declaration or
definition. And of course, putting the opening brace on the same line, instead
of a line by itself, allows you to fit more lines on a page. 
So why do we have so many other styles?
In particular, you'll notice that most people create classes following the
style above (which Stroustrup uses in all editions of his book The C++
Programming Language from Addison-Wesley) but create function definitions by
putting the opening brace on a single line by itself (which also engenders many
different indentation styles). Stroustrup does this except for short inline
functions. With the approach I describe here, everything is consistent -
you name whatever it is (class, function, enum, etc.) and on that
same line you put the opening brace to indicate that the body for this thing is
about to follow. Also, the opening brace is the same for short inlines and
ordinary function definitions.
I assert that the style of function
definition used by many folks comes from pre-function-prototyping C, in which
you didn't declare the arguments inside the parentheses, but instead
between the closing parenthesis and the opening curly brace (this shows
C's assembly-language roots):
void bar()
 int x;
 float y;
{
 /* body here */
}

Here, it would be quite ungainly to put
the opening brace on the same line, so no one did it. However, they did make
various decisions about whether the braces should be indented with the body of
the code or whether they should be at the level of the “precursor.”
Thus, we got many different formatting styles. 
There are other arguments for placing the
brace on the line immediately following the declaration (of a class, struct,
function, etc.). The following came from a reader, and is presented here so you
know what the issues are:
Experienced ‘vi' (vim) users
know that typing the ‘]' key twice will take the user to the next
occurrence of ‘{‘ (or ^L) in column 0. This feature is extremely
useful in navigating code (jumping to the next function or class definition).
[My comment: when I was initially working under Unix, GNU Emacs was just
appearing and I became enmeshed in that. As a result, ‘vi' has never
made sense to me, and thus I do not think in terms of “column 0
locations.” However, there is a fair contingent of ‘vi' users
out there, and they are affected by this issue.]
Placing the ‘{‘ on the next
line eliminates some confusing code in complex conditionals, aiding in the
scannability. Example:
if(cond1
   && cond2
   && cond3) {
   statement;
}

The above [asserts the reader] has poor
scannability. However,
if (cond1
&& cond2
&& cond3)
{
statement;
}

breaks up the ‘if' from the
body, resulting in better readability. [Your opinions on whether this is true
will vary depending on what you're used to.]
Finally, it's much easier to
visually align braces when they are aligned in the same column. They visually
"stick out" much better. [End of reader comment]
The issue of where to put the opening
curly brace is probably the most discordant issue. I've learned to scan
both forms, and in the end it comes down to what you've grown comfortable
with. However, I note that the official Java coding standard (found on
Sun's Java Web site) is effectively the same as the one I present here
- since more folks are beginning to program in both languages, the
consistency between coding styles may be helpful.
The approach I use removes all the
exceptions and special cases, and logically produces a single style of
indentation as well. Even within a function body, the consistency holds, as
in:
for(int i = 0; i < 100; i++) {
  cout << i << endl;
  cout << x * i << endl;
}

The style is easy to teach and to
remember - you use a single, consistent rule for all your formatting, not
one for classes, two for functions (one-line inlines vs. multi-line), and
possibly others for for loops, if statements, etc. The consistency
alone, I think, makes it worthy of consideration. Above all, C++ is a newer
language than C, and although we must make many concessions to C, we
shouldn't be carrying too many artifacts with us that cause problems in
the future. Small problems multiplied by many lines of code become big problems.
For a thorough examination of the subject, albeit in C, see C Style:
Standards and Guidelines, by David Straker
(Prentice-Hall 1992).
The other constraint I must work under is
the line width, since the book has a limitation of 50 characters. What happens
when something is too long to fit on one line? Well, again I strive to have a
consistent policy for the way lines are broken up, so they can be easily viewed.
As long as something is part of a single definition, argument list, etc.,
continuation lines should be indented one level in from the beginning of that
definition, argument list, etc. 
Identifier
names
Those familiar with Java will notice that
I have switched to using the standard Java style for all identifier names.
However, I cannot be completely consistent here because identifiers in the
Standard C and C++ libraries do not follow this style.
The style is quite straightforward. The
first letter of an identifier is only capitalized if that identifier is a class.
If it is a function or variable, then the first letter is lowercase. The rest of
the identifier consists of one or more words, run together but distinguished by
capitalizing each word. So a class looks like this:
class FrenchVanilla : public IceCream {

an object identifier looks like
this:
FrenchVanilla myIceCreamCone(3);

and a function looks like
this:
void eatIceCreamCone();

(for either a member function or a
regular function).
The one exception is for compile-time
constants (const or #define), in which all of the letters in the
identifier are uppercase.
The value of the style is that
capitalization has meaning - you can see from the first letter whether
you're talking about a class or an object/method. This is especially
useful when static class members are accessed.
Order of header
inclusion
Headers are
included in order from “the most specific to the most general.” That
is, any header files in the local directory are included first, then any of my
own “tool” headers, such as
require.h, then any third-party library headers,
then the Standard C++ Library headers, and finally the C library
headers.
The justification for this comes from
John Lakos in Large-Scale C++ Software Design
(Addison-Wesley, 1996):
Latent usage errors can be avoided by
ensuring that the .h file of a component parses by itself - without
externally-provided declarations or definitions... Including the .h file as the
very first line of the .c file ensures that no critical piece of information
intrinsic to the physical interface of the component is missing from the .h file
(or, if there is, that you will find out about it as soon as you try to compile
the .c file).
If the order of header inclusion goes
“from most specific to most general,” then it's more likely
that if your header doesn't parse by itself, you'll find out about
it sooner and prevent annoyances down the road.
Include guards on header
files
Include
guards are always used inside header files to prevent multiple inclusion of
a header file during the compilation of a single .cpp file. The include
guards are implemented using a preprocessor #define and checking to see
that a name hasn't already been defined. The name used for the guard is
based on the name of the header file, with all letters of the file name
uppercase and replacing the ‘.' with an underscore. For
example:
// IncludeGuard.h
#ifndef INCLUDEGUARD_H
#define INCLUDEGUARD_H
// Body of header file here...
#endif // INCLUDEGUARD_H

The identifier on the last line is
included for clarity. Although some preprocessors ignored any characters after
an #endif, that
isn't standard behavior and so the identifier is commented.

Use of
namespaces
In header files, any
“pollution” of the
namespace in which the header is
included must be scrupulously avoided. That is, if you change the namespace
outside of a function or class, you will cause that change to occur for any file
that includes your header, resulting in all kinds of problems. No
using declarations of any kind are allowed
outside of function definitions, and no global using
directives are allowed in header files.
In cpp files, any global
using directives will only affect that file, and so in this book they are
generally used to produce more easily-readable code, especially in small
programs.
Use of require( ) and
assure( )
The
require( ) and
assure( ) functions defined in
require.h are used consistently throughout most
of the book, so that they may properly report problems. If you are familiar with
the concepts of preconditions and
postconditions (introduced by Bertrand Meyer) you
will recognize that the use of require( ) and assure( )
more or less provide preconditions (usually) and postconditions (occasionally).
Thus, at the beginning of a function, before any of the “core” of
the function is executed, the preconditions are checked to make sure everything
is proper and that all of the necessary conditions are correct. Then the
“core” of the function is executed, and sometimes some
postconditions are checked to make sure that the new state of the data is within
defined parameters. You'll notice that the postcondition checks are rare
in this book, and assure( ) is primarily used to make sure that
files were opened successfully.

18 - 
B: Programming Guidelines
This appendix is a collection of
suggestions for C++ programming. They've been assembled over the course of
my teaching and programming experience and
also from the insights of friends
including Dan Saks (co-author with Tom
Plum of C++ Programming Guidelines, Plum Hall,
1991), Scott Meyers (author of Effective C++,
2nd edition, Addison-Wesley, 1998), and Rob
Murray (author of C++ Strategies & Tactics,
Addison-Wesley, 1993). Also, many of the tips are summarized from the pages of
Thinking in C++.

		First make it work, then
make it fast. This is true even if you are certain that a piece of code is
really important and that it will be a principal bottleneck in your system.
Don't do it. Get the system going first with as simple a design as
possible. Then if it isn't going fast enough, profile it. You'll
almost always discover that “your” bottleneck isn't the
problem. Save your time for the really important
stuff.
		Elegance
always pays off. It's not a frivolous pursuit. Not only does it give you a
program that's easier to build and debug, but it's also easier to
understand and maintain, and that's where the financial value lies. This
point can take some experience to believe, because it can seem that while
you're making a piece of code elegant, you're not being productive.
The productivity comes when the code seamlessly integrates into your system, and
even more so when the code or system is
modified.
		Remember
the “divide and conquer” principle. If the problem you're
looking at is too confusing, try to imagine what the basic operation of the
program would be, given the existence of a magic “piece” that
handles the hard parts. That “piece” is an object - write the
code that uses the object, then look at the object and encapsulate its
hard parts into other objects,
etc.
		Don't
automatically rewrite all your existing C code in C++ unless you need to
significantly change its functionality (that is, don't fix it if it
isn't broken). Recompiling C in C++ is a valuable activity because
it may reveal hidden bugs. However, taking C code that works fine and rewriting
it in C++ may not be the best use of your time, unless the C++ version will
provide a lot of opportunities for reuse as a
class.
		If you do
have a large body of C code that needs changing, first isolate the parts of the
code that will not be modified, possibly wrapping those functions in an
“API class” as static member functions. Then focus on the code that
will be changed, refactoring it into classes to facilitate easy modifications as
your maintenance
proceeds.
		Separate
the class creator from the class user (client programmer). The class user
is the “customer” and doesn't need or want to know
what's going on behind the scenes of the class. The class creator must be
the expert in class design and write the class so that it can be used by the
most novice programmer possible, yet still work robustly in the application.
Library use will be easy only if it's
transparent.
		When
you create a class, make your names as clear as possible. Your goal should be to
make the client programmer's interface conceptually simple. Attempt to
make your names so clear that comments are unnecessary. To this end, use
function overloading and default arguments to create an intuitive, easy-to-use
interface.
		Access
control allows you (the class creator) to change as much as possible in the
future without damaging client code in which the class is used. In this light,
keep everything as private as possible, and make only the class interface
public, always using functions rather than data. Make data public
only when forced. If class users don't need to access a function, make it
private. If a part of your class must be exposed to inheritors as
protected, provide a function interface rather than expose the actual
data. In this way, implementation changes will have minimal impact on derived
classes.
		Don't
fall into analysis paralysis. There are some things that you don't learn
until you start coding and get some kind of system working. C++ has built-in
firewalls; let them work for you. Your mistakes in a class or set of classes
won't destroy the integrity of the whole
system.
		Your
analysis and design must produce, at minimum, the classes in your system, their
public interfaces, and their relationships to other classes, especially base
classes. If your design methodology produces more than that, ask yourself if all
the pieces produced by that methodology have value over the lifetime of the
program. If they do not, maintaining them will cost you. Members of development
teams tend not to maintain anything that does not contribute to their
productivity; this is a fact of life that many design methods don't
account for.
		Write
the test code first (before you write the class), and keep it with the class.
Automate the running of your tests through a makefile or similar tool. This way,
any changes can be automatically verified by running the test code, and
you'll immediately discover errors. Because you know that you have the
safety net of your test framework, you will be bolder about making sweeping
changes when you discover the need. Remember that the greatest improvements in
languages come from the built-in testing that type checking, exception handling,
etc., provide, but those features take you only so far. You must go the rest of
the way in creating a robust system by filling in the tests that verify features
that are specific to your class or
program.
		Write the
test code first (before you write the class) in order to verify that your class
design is complete. If you can't write test code, you don't know
what your class looks like. In addition, the act of writing the test code will
often flush out additional features or constraints that you need in the class
- these features or constraints don't always appear during analysis
and design.
		Remember
a fundamental rule of software
engineering(65):
All software design problems can be simplified by introducing an extra level
of conceptual indirection. This one idea is the basis of abstraction, the
primary feature of object-oriented
programming.
		Make
classes as atomic as possible; that is, give each class a single, clear purpose.
If your classes or your system design grows too complicated, break complex
classes into simpler ones. The most obvious indicator of this is sheer size: if
a class is big, chances are it's doing too much and should be broken
up.
		Watch for long
member function definitions. A function that is long and complicated is
difficult and expensive to maintain, and is probably trying to do too much all
by itself. If you see such a function, it indicates that, at the least, it
should be broken up into multiple functions. It may also suggest the creation of
a new class.
		Watch
for long argument lists. Function calls then become difficult to write, read and
maintain. Instead, try to move the member function to a class where it is (more)
appropriate, and/or pass objects in as
arguments.
		Don't
repeat yourself. If a piece of code is recurring in many functions in derived
classes, put that code into a single function in the base class and call it from
the derived-class functions. Not only do you save code space, you provide for
easy propagation of changes. You can use an inline function for efficiency.
Sometimes the discovery of this common code will add valuable functionality to
your
interface.
		Watch for
switch statements or chained if-else clauses. This is typically an
indicator of type-check coding, which means you are choosing what code to
execute based on some kind of type information (the exact type may not be
obvious at first). You can usually replace this kind of code with inheritance
and polymorphism; a polymorphic function call will perform the type checking for
you, and allow for more reliable and easier
extensibility.
		From
a design standpoint, look for and separate things that change from things that
stay the same. That is, search for the elements in a system that you might want
to change without forcing a redesign, then encapsulate those elements in
classes. You can learn significantly more about this concept in the Design
Patterns chapter in Volume 2 of this book, available at
www.BruceEckel.com.
		Watch
out for variance. Two semantically different objects may have identical
actions, or responsibilities, and there is a natural temptation to try to make
one a subclass of the other just to benefit from inheritance. This is called
variance, but there's no real justification to force a superclass/subclass
relationship where it doesn't exist. A better solution is to create a
general base class that produces an interface for both as derived classes
- it requires a bit more space, but you still benefit from inheritance and
will probably make an important discovery about the
design.
		Watch out
for limitation during inheritance. The clearest designs add new
capabilities to inherited ones. A suspicious design removes old capabilities
during inheritance without adding new ones. But rules are made to be broken, and
if you are working from an old class library, it may be more efficient to
restrict an existing class in its subclass than it would be to restructure the
hierarchy so your new class fits in where it should, above the old
class.
		Don't
extend fundamental functionality by subclassing. If an interface element is
essential to a class it should be in the base class, not added during
derivation. If you're adding member functions by inheriting, perhaps you
should rethink the
design.
		Less is
more. Start with a minimal interface to a class, as small and simple as you need
to solve the problem at hand, but don't try to anticipate all the ways
that your class might be used. As the class is used, you'll
discover ways you must expand the interface. However, once a class is in use you
cannot shrink the interface without disturbing client code. If you need to add
more functions, that's fine; it won't disturb code, other than
forcing recompiles. But even if new member functions replace the functionality
of old ones, leave the existing interface alone (you can combine the
functionality in the underlying implementation if you want). If you need to
expand the interface of an existing function by adding more arguments, leave the
existing arguments in their current order, and put default values on all of the
new arguments; this way you won't disturb any existing calls to that
function.
		Read your
classes aloud to make sure they're logical, referring to the relationship
between a base class and derived class as “is-a” and member objects
as
“has-a.”
		When
deciding between inheritance and composition, ask if you need to upcast to the
base type. If not, prefer composition (member objects) to inheritance. This can
eliminate the perceived need for multiple inheritance. If you inherit, users
will think they are supposed to
upcast.
		Sometimes
you need to inherit in order to access protected members of the base
class. This can lead to a perceived need for multiple inheritance. If you
don't need to upcast, first derive a new class to perform the protected
access. Then make that new class a member object inside any class that needs to
use it, rather than
inheriting.
		Typically,
a base class will be used primarily to create an interface to classes derived
from it. Thus, when you create a base class, default to making the member
functions pure virtual. The destructor can also be pure virtual (to force
inheritors to explicitly override it), but remember to give the destructor a
function body, because all destructors in a hierarchy are always
called.
		When you put
a virtual function in a class, make all functions in that class
virtual, and put in a virtual destructor. This approach prevents
surprises in the behavior of the interface. Only start removing the
virtual keyword when you're tuning for efficiency and your profiler
has pointed you in this
direction.
		Use data
members for variation in value and virtual functions for variation in
behavior. That is, if you find a class that uses state variables along with
member functions that switch behavior based on those variables, you should
probably redesign it to express the differences in behavior within subclasses
and overridden virtual
functions.
		If you
must do something nonportable, make an abstraction for that service and localize
it within a class. This extra level of indirection prevents the non-portability
from being distributed throughout your
program.
		Avoid
multiple inheritance. It's for getting you out of bad situations,
especially repairing class interfaces in which you don't have control of
the broken class (see Volume 2). You should be an experienced programmer before
designing multiple inheritance into your
system.
		Don't
use private inheritance. Although it's in the language and seems to
have occasional functionality, it introduces  significant ambiguities when
combined with run-time type identification. Create a private member object
instead of using private
inheritance.
		If two
classes are associated with each other in some functional way (such as
containers and iterators), try to make one a public nested friend
class of the other, as the Standard C++ Library does with iterators inside
containers (examples of this are shown in the latter part of Chapter 16). This
not only emphasizes the association between the classes, but it allows the class
name to be reused by nesting it within another class. The Standard C++ Library
does this by defining a nested iterator class inside each container
class, thereby providing the containers with a common interface. The other
reason you'll want to nest a class is as part of the private
implementation. Here, nesting is beneficial for implementation hiding rather
than the class association and prevention of namespace pollution noted
above.
		Operator
overloading is only “syntactic sugar:” a different way to make a
function call. If overloading an operator doesn't make the class interface
clearer and easier to use, don't do it. Create only one automatic type
conversion operator for a class. In general, follow the guidelines and format
given in Chapter 12 when overloading
operators.
		Don't
fall prey to premature optimization. That way lies madness. In particular,
don't worry about writing (or avoiding) inline functions, making
some functions nonvirtual, or tweaking code to be efficient when you are
first constructing the system. Your primary goal should be to prove the design,
unless the design requires a certain
efficiency.
		Normally,
don't let the compiler create the constructors, destructors, or the
operator= for you. Class designers should always say exactly what the
class should do and keep the class entirely under control. If you don't
want a copy-constructor or operator=, declare them as private.Remember that if you create any constructor, it prevents the default
constructor from being
synthesized.
		If your
class contains pointers, you must create the copy-constructor, operator=,
and destructor for the class to work
properly.
		When you
write a copy-constructor for a derived class, remember to call the base-class
copy-constructor explicitly (also the member-object versions). (See Chapter 14.)
If you don't, the default constructor will be called for the base class
(or member object) and that probably isn't what you want. To call the
base-class copy-constructor, pass it the derived object you're copying
from:
Derived(const Derived& d) :
Base(d) { //
...
		When
you write an assignment operator for a derived class, remember to call the
base-class version of the assignment operator explicitly. (See Chapter 14.) If
you don't, then nothing will happen (the same is true for the member
objects). To call the base-class assignment operator, use the base-class name
and scope resolution:
Derived&
operator=(const Derived& d)
{
 
Base::operator=(d);
		If
you need to minimize recompiles during development of a large project, use the
handle class/Cheshire cat technique demonstrated in Chapter 5, and remove it
only if runtime efficiency is a
problem.
		Avoid the
preprocessor. Always use const for value substitution and inlines
for macros.
		Keep
scopes as small as possible so the visibility and lifetime of your objects are
as small as possible. This reduces the chance of using an object in the wrong
context and hiding a difficult-to-find bug. For example, suppose you have a
container and a piece of code that iterates through it. If you copy that code to
use with a new container, you may accidentally end up using the size of the old
container as the upper bound of the new one. If, however, the old container is
out of scope, the error will be caught at compile
time.
		Avoid global
variables. Always strive to put data inside classes. Global functions are more
likely to occur naturally than global variables, although you may later discover
that a global function may fit better as a static member of a
class.
		If you need
to declare a class or function from a library, always do so by including a
header file. For example, if you want to create a function to write to an
ostream, never declare ostream yourself using an incomplete type
specification like this,
class
ostream;
This approach leaves your code
vulnerable to changes in representation. (For example, ostream could
actually be a typedef.) Instead, always use the header
file:
#include
<iostream>
When creating your own
classes, if a library is big, provide your users an abbreviated form of the
header file with incomplete type specifications (that is, class name
declarations) for cases in which they need to use only pointers. (It can speed
compilations.)
		When
choosing the return type of an overloaded operator, consider what will happen if
expressions are chained together. Return a copy or reference to the lvalue
(return *this) so it can be used in a chained expression (A = B =
C). When defining operator=, remember
x=x.
		When
writing a function, pass arguments by const reference as your first
choice. As long as you don't need to modify the object being passed, this
practice is best because it has the simplicity of pass-by-value syntax but
doesn't require expensive constructions and destructions to create a local
object, which occurs when passing by value. Normally you don't want to be
worrying too much about efficiency issues when designing and building your
system, but this habit is a sure
win.
		Be aware of
temporaries. When tuning for performance, watch out for temporary
creation, especially with operator overloading. If your constructors and
destructors are complicated, the cost of creating and destroying temporaries can
be high. When returning a value from a function, always try to build the object
“in place” with a constructor call in the return statement:

return MyType(i,
j);
rather
than
MyType x(i,
j);
return
x;
The former return statement (the
so-called return-value optimization)eliminates a copy-constructor
call and destructor
call.
		When creating
constructors, consider exceptions. In the best case, the constructor won't
do anything that throws an exception. In the next-best scenario, the class will
be composed and inherited from robust classes only, so they will automatically
clean themselves up if an exception is thrown. If you must have naked pointers,
you are responsible for catching your own exceptions and then deallocating any
resources pointed to before you throw an exception in your constructor. If a
constructor must fail, the appropriate action is to throw an
exception.
		Do only
what is minimally necessary in your constructors. Not only does this produce a
lower overhead for constructor calls (many of which may not be under your
control) but your constructors are then less likely to throw exceptions or cause
problems.
		The
responsibility of the destructor is to release resources allocated during the
lifetime of the object, not just during
construction.
		Use
exception hierarchies, preferably derived from the Standard C++ exception
hierarchy and nested as public classes within the class that throws the
exceptions. The person catching the exceptions can then catch the specific types
of exceptions, followed by the base type. If you add new derived exceptions,
existing client code will still catch the exception through the base
type.
		Throw
exceptions by value and catch exceptions by reference. Let the
exception-handling mechanism handle memory management. If you throw pointers to
exception objects that have been created on the heap, the catcher must know to
destroy the exception, which is bad coupling. If you catch exceptions by value,
you cause extra constructions and destructions; worse, the derived portions of
your exception objects may be sliced during upcasting by
value.
		Don't
write your own class templates unless you must. Look first in the Standard C++
Library, then to vendors who create special-purpose tools. Become proficient
with their use and you'll greatly increase your
productivity.
		When
creating templates, watch for code that does not depend on type and put that
code in a non-template base class to prevent needless code bloat. Using
inheritance or composition, you can create templates in which the bulk of the
code they contain is type-dependent and therefore
essential.
		Don't
use the <cstdio> functions, such as printf( ). Learn to
use iostreams instead; they are type-safe and type-extensible, and significantly
more powerful. Your investment will be rewarded regularly. In general, always
use C++ libraries in preference to C
libraries.
		Avoid
C's built-in types. They are supported in C++ for backward compatibility,
but they are much less robust than C++ classes, so your bug-hunting time will
increase.
		Whenever
you use built-in types as globals or automatics, don't define them until
you can also initialize them. Define variables one per line along with their
initialization. When defining pointers, put the ‘*' next to
the type name. You can safely do this if you define one variable per line. This
style tends to be less confusing for the
reader.
		Guarantee
that initialization occurs in all aspects of your code. Perform all member
initialization in the constructor initializer list, even built-in types (using
pseudo-constructor calls). Using the constructor initializer list is often more
efficient when initializing subobjects; otherwise the default constructor is
called, and you end up calling other member functions (probably
operator=) on top of that in order to get the initialization you
want.
		Don't
use the form MyType a = b; to define an object. This one feature is a
major source of confusion because it calls a constructor instead of the
operator=. For clarity, always be specific and use the form MyType
a(b); instead. The results are identical, but other programmers won't
be confused.
		Use the
explicit casts described in Chapter 3. A cast overrides the normal typing system
and is a potential error spot. Since the explicit casts divide C's
one-cast-does-all into classes of well-marked casts, anyone debugging and
maintaining the code can easily find all the places where logical errors are
most likely to
happen.
		For a
program to be robust, each component must be robust. Use all the tools provided
by C++: access control, exceptions, const-correctness, type checking, and so on
in each class you create. That way you can safely move to the next level of
abstraction when building your
system.
		Build in
const-correctness. This allows the compiler to point out bugs that would
otherwise be subtle and difficult to find. This practice takes a little
discipline and must be used consistently throughout your classes, but it pays
off.
		Use compiler
error checking to your advantage. Perform all compiles with full warnings, and
fix your code to remove all warnings. Write code that utilizes the compile-time
errors and warnings rather than that which causes runtime errors (for example,
don't use variadic argument lists, which disable all type checking). Use
assert( ) for debugging, but use exceptions for runtime
errors.
		Prefer
compile-time errors to runtime errors. Try to handle an error as close to the
point of its occurrence as possible. Prefer dealing with the error at that point
to throwing an exception. Catch any exceptions in the nearest handler that has
enough information to deal with them. Do what you can with the exception at the
current level; if that doesn't solve the problem, rethrow the exception.
(See Volume 2 for more
details.)
		If
you're using exception specifications (see Volume 2 of this book,
downloadable from www.BruceEckel.com, to learn about exception handling),
install your own unexpected( ) function using
set_unexpected( ). Your unexpected( ) should log the
error and rethrow the current exception. That way, if an existing function gets
overridden and starts throwing exceptions, you will have a record of the culprit
and can modify your calling code to handle the exception.

		Create a
user-defined terminate( ) (indicating a programmer error) to log the
error that caused the exception, then release system resources, and exit the
program.
		If a
destructor calls any functions, those functions might throw exceptions. A
destructor cannot throw an exception (this can result in a call to
terminate( ), which indicates a programming error), so any
destructor that calls functions must catch and manage its own
exceptions.
		Don't
create your own “decorated” private data member names (prepending
underscores, Hungarian notation, etc.), unless you have a lot of pre-existing
global values; otherwise, let classes and namespaces do the name scoping for
you.
		Watch for
overloading. A function should not conditionally execute code based on the value
of an argument, default or not. In this case, you should create two or more
overloaded functions
instead.
		Hide your
pointers inside container classes. Bring them out only when you are going to
immediately perform operations on them. Pointers have always been a major source
of bugs. When you use new, try to drop the resulting pointer into a
container.Prefer that a container “own” its pointers so
it's responsible for cleanup. Even better, wrap a pointer inside a class;
if you still want it to look like a pointer, overload operator-> and
operator*.If you must have a free-standing pointer, always
initialize it, preferably to an object address, but to zero if necessary. Set it
to zero when you delete it to prevent accidental multiple
deletions.
		Don't
overload global new and delete; always do this on a class-by-class
basis. Overloading the global versions affects the entire client programmer
project, something only the creators of a project should control. When
overloading new and delete for classes, don't assume that
you know the size of the object; someone may be inheriting from you. Use the
provided argument. If you do anything special, consider the effect it could have
on
inheritors.
		Prevent
object slicing. It virtually never makes sense to upcast an object by value. To
prevent upcasting by value, put pure virtual functions in your base
class.
		Sometimes
simple aggregation does the job. A “passenger comfort system” on an
airline consists of disconnected elements: seat, air conditioning, video, etc.,
and yet you need to create many of these in a plane. Do you make private members
and build a whole new interface? No - in this case, the components are
also part of the public interface, so you should create public member objects.
Those objects have their own private implementations, which are still safe. Be
aware that simple aggregation is not a solution to be used often, but it does
happen. 


19 - 
C: Recommended Reading
Resources for further
study.
19-1 - 
C
Thinking in C: Foundations for Java
& C++, by Chuck Allison (a MindView, Inc.
Seminar-on-CD ROM, ©2000, bound into the back of this book and also
available at www.BruceEckel.com). This is a course including lectures and
slides in the foundations of the C Language to prepare you to learn Java or C++.
This is not an exhaustive course in C; only the necessities for moving on to the
other languages are included. Additional language-specific sections introduce
features for the C++ or Java programmer-to-be. Recommended prerequisite: some
experience with a high-level programming language, such as Pascal, BASIC,
Fortran, or LISP (it's possible to struggle through the CD without this
background, but the course isn't designed to be an introduction to the
basics of programming). 
19-2 - 
General C++
The C++ Programming Language,
3rd edition, by Bjarne Stroustrup
(Addison-Wesley 1997). To some degree, the goal of the book that you're
currently holding is to allow you to use Bjarne's book as a reference.
Since his book contains the description of the language by the author of that
language, it's typically the place where you'll go to resolve any
uncertainties about what C++ is or isn't supposed to do. When you get the
knack of the language and are ready to get serious, you'll need
it.
C++ Primer, 3rd
Edition, by Stanley Lippman and
Josee Lajoie (Addison-Wesley 1998). Not that much of a
primer anymore; it's evolved into a thick book filled with lots of detail,
and the one that I reach for along with Stroustrup's when trying to
resolve an issue. Thinking in C++ should provide a basis for
understanding the C++ Primer as well as Stroustrup's
book.
C & C++ Code Capsules, by
Chuck Allison (Prentice-Hall, 1998). This book assumes
that you already know C and C++, and covers some of the issues that you may be
rusty on, or that you may not have gotten right the first time. This book fills
in C gaps as well as C++ gaps.
The C++ Standard. This is the
document that the committee worked so hard on for all those years. This is
not free, unfortunately. But at least you can buy the electronic form in
PDF for only $18 at
www.cssinfo.com.
19-2-1 - 
My own list of books 
Listed in order of publication. Not all
of these are currently available.
Computer Interfacing with Pascal &
C (Self-published via the Eisys imprint, 1988. Only available via
www.BruceEckel.com). An introduction to electronics from back when CP/M
was still king and DOS was an upstart. I used high-level languages and often the
parallel port of the computer to drive various electronic projects. Adapted from
my columns in the first and best magazine I wrote for, Micro Cornucopia
(To paraphrase Larry O'Brien, long-time editor of Software
Development Magazine: the best computer magazine ever published - they
even had plans for building a robot in a flower pot!) Alas, Micro C became lost
long before the Internet appeared. Creating this book was an extremely
satisfying publishing experience.
Using C++ (Osborne/McGraw-Hill
1989). One of the first books out on C++. This is out of print and replaced by
its second edition, the renamed C++ Inside & Out.
C++ Inside & Out
(Osborne/McGraw-Hill 1993). As noted, actually the 2nd edition of
Using C++. The C++ in this book is reasonably accurate, but it's circa
1992 and Thinking in C++ is intended to replace it. You can find out more
about this book and download the source code at
www.BruceEckel.com.
Thinking in C++, 1st
edition (Prentice-Hall 1995). 
Black Belt C++, the Master's
Collection, Bruce Eckel, editor (M&T Books 1994). Out of print. A
collection of chapters by various C++ luminaries based on their presentations in
the C++ track at the Software Development Conference, which I chaired. The cover
on this book stimulated me to gain control over all future cover
designs.
Thinking in Java, 2nd
edition (Prentice-Hall, 2000). The first edition of this book won the
Software Development Magazine Productivity Award and the Java
Developer's Journal Editor's Choice Award in 1999. Downloadable
from www.BruceEckel.com.
19-3 - 
Depth & dark corners
These books go more deeply into language
topics, and help you avoid the typical pitfalls inherent in developing C++
programs.
Effective C++ (2nd
Edition, Addison-Wesley 1998) and More Effective C++ (Addison-Wesley
1996), by Scott Meyers. The classic, must-have texts for
serious problem-solving and code design in C++. I've tried to capture and
express many of the concepts from these books in Thinking in C++, but I
don't fool myself in thinking that I've succeeded. If you spend any
serious time with C++ you'll end up with these books. Also available on CD
ROM. 
Ruminations on C++, by
Andrew Koenig and Barbara Moo
(Addison-Wesley, 1996). Andrew worked directly with Stroustrup on many aspects
of the C++ language and is an extremely reliable authority. I've also
found the incisiveness of his insights to be refreshing, and have learned much
from him, both in print and in person, over the years.
Large-Scale C++ Software Design,
by John Lakos(Addison-Wesley, 1996). Covers
issues and answers questions you will encounter during the creation of big
projects, but often smaller ones as well.
C++ Gems, Stan Lippman, editor
(SIGS publications, 1996). A selection of articles from The C++
Report.
The Design & Evolution of C++,
by Bjarne Stroustrup (Addison-Wesley 1994). Insights
from the inventor of C++ about why he made various design decisions. Not
essential, but interesting.
19-4 - 
Analysis & design
Extreme Programming Explained by
Kent Beck (Addison-Wesley 2000). I love this
book. Yes, I tend to take a radical approach to things but I've always felt that
there could be a much different, much better program development process, and I
think XP comes pretty darn close. The only book that has had a similar impact on
me was PeopleWare (described below), which talks primarily about the
environment and dealing with corporate culture. Extreme Programming
Explained talks about programming, and turns most things, even recent
“findings,” on their ear. They even go so far as to say that
pictures are OK as long as you don't spend too much time on them and are
willing to throw them away. (You'll notice that this book does not
have the “UML stamp of approval” on its cover.) I could see
deciding whether to work for a company based solely on whether they used XP.
Small book, small chapters, effortless to read, exciting to think about. You
start imagining yourself working in such an atmosphere and it brings visions of
a whole new world.
UML
Distilled by Martin Fowler (2nd edition,
Addison-Wesley, 2000). When you first encounter UML, it is daunting because
there are so many diagrams and details. According to Fowler, most of this stuff
is unnecessary so he cuts through to the essentials. For most projects, you only
need to know a few diagramming tools, and Fowler's goal is to come up with
a good design rather than worry about all the artifacts of getting there. A
nice, thin, readable book; the first one you should get if you need to
understand UML.
The Unified Software Development
Process by Ivar Jacobsen, Grady
Booch, and James Rumbaugh
(Addison-Wesley 1999). I went in fully prepared to dislike this book. It seemed
to have all the makings of a boring college text. I was pleasantly surprised
- only pockets of the book contain explanations that seem as if those
concepts aren't clear to the authors. The bulk of the book is not only
clear, but enjoyable. And best of all, the process makes a lot of practical
sense. It's not Extreme Programming (and does not have their clarity about
testing) but it's also part of the UML juggernaut - even if you
can't get XP adopted, most people have climbed aboard the “UML is
good” bandwagon (regardless of their actual level of experience
with it) and so you can probably get it adopted. I think this book should be the
flagship of UML, and the one you can read after Fowler's UML
Distilled when you want more detail.
Before you choose any method, it's
helpful to gain perspective from those who are not trying to sell one.
It's easy to adopt a method without really understanding what you want out
of it or what it will do for you. Others are using it, which seems a compelling
reason. However, humans have a strange little psychological quirk: If they want
to believe something will solve their problems, they'll try it. (This is
experimentation, which is good.) But if it doesn't solve their problems,
they may redouble their efforts and begin to announce loudly what a great thing
they've discovered. (This is denial, which is not good.) The assumption
here may be that if you can get other people in the same boat, you won't
be lonely, even if it's going nowhere (or sinking).
This is not to suggest that all
methodologies go nowhere, but that you should be armed to the teeth with mental
tools that help you stay in experimentation mode (“It's not working;
let's try something else”) and out of denial mode (“No,
that's not really a problem. Everything's wonderful, we don't
need to change”). I think the following books, read before you
choose a method, will provide you with these tools.
Software Creativity, by Robert
Glass (Prentice-Hall, 1995). This is the best book
I've seen that discusses perspective on the whole methodology
issue. It's a collection of short essays and papers that Glass has written
and sometimes acquired (P.J. Plauger is one
contributor), reflecting his many years of thinking and study on the subject.
They're entertaining and only long enough to say what's necessary;
he doesn't ramble and bore you. He's not just blowing smoke, either;
there are hundreds of references to other papers and studies. All programmers
and managers should read this book before wading into the methodology
mire.
Software Runaways: Monumental Software
Disasters, by Robert Glass (Prentice-Hall 1997). The great thing about this
book is that it brings to the forefront what we don't talk about: how many
projects not only fail, but fail spectacularly. I find that most of us still
think “That can't happen to me” (or “That can't
happen again”) and I think this puts us at a disadvantage. By
keeping in mind that things can always go wrong, you're in a much better
position to make them go right.
Object Lessons by Tom
Love (SIGS Books, 1993). Another good
“perspective” book.
Peopleware, by Tom
Demarco and Timothy Lister
(Dorset House, 2nd edition 1999). Although they have backgrounds in
software development, this book is about projects and teams in general. But the
focus is on the people and their needs rather than the technology and its
needs. They talk about creating an environment where people will be happy and
productive, rather than deciding what rules those people should follow to be
adequate components of a machine. This latter attitude, I think, is the biggest
contributor to programmers smiling and nodding when XYZ method is adopted and
then quietly doing whatever they've always done.
Complexity, by M. Mitchell
Waldrop (Simon & Schuster, 1992). This chronicles
the coming together of a group of scientists from different disciplines in Santa
Fe, New Mexico, to discuss real problems that the individual disciplines
couldn't solve (the stock market in economics, the initial formation of
life in biology, why people do what they do in sociology, etc.). By crossing
physics, economics, chemistry, math, computer science, sociology, and others, a
multidisciplinary approach to these problems is developing. But more
importantly, a different way of thinking about these ultra-complex
problems is emerging: Away from mathematical determinism and the illusion that
you can write an equation that predicts all behavior and toward first
observing and looking for a pattern and trying to emulate that pattern by
any means possible. (The book chronicles, for example, the emergence of genetic
algorithms.) This kind of thinking, I believe, is useful as we observe ways to
manage more and more complex software projects.
(1)
Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1986
(first edition).
(2)Using C++,Osborne/McGraw-Hill 1989.
(3)Using C++ and C++ Inside & Out,Osborne/McGraw-Hill
1993.
(4)
See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley
1995).
(5)
You can find an interesting implementation of this problem in Volume 2 of this
book, available at www.BruceEckel.com.
(6)
Some people make a distinction, stating that type determines the interface while
class is a particular implementation of that interface.
(7)
I'm indebted to my friend Scott Meyers for this term.
(8)
This is usually enough detail for most diagrams, and you don't need to get
specific about whether you're using aggregation or
composition.
(9)
An excellent example of this is UML Distilled, by Martin Fowler
(Addison-Wesley 2000), which reduces the sometimes-overwhelming UML process to a
manageable subset.
(10)
My rule of thumb for estimating such projects: If there's more than one
wild card, don't even try to plan how long it's going to take or how
much it will cost until you've created a working prototype. There are too
many degrees of freedom.
(11)
Thanks for help from James H Jarrett.
(12)
More information on use cases can be found in Applying Use Cases by
Schneider & Winters (Addison-Wesley 1998) and Use Case Driven Object
Modeling with UML by Rosenberg (Addison-Wesley 1999).
(13)
My personal take on this has changed lately. Doubling and adding 10 percent will
give you a reasonably accurate estimate (assuming there are not too many
wild-card factors), but you still have to work quite diligently to finish in
that time. If you want time to really make it elegant and to enjoy yourself in
the process, the correct multiplier is more like three or four times, I
believe.
(14)
For starters, I recommend the aforementioned UML
Distilled.
(15)
Python (www.Python.org) is often used as “executable
pseudocode.”
(16)
At least one aspect of evolution is covered in Martin Fowler's book
Refactoring: improving the design of existing code (Addison-Wesley 1999).
Be forewarned that this book uses Java examples exclusively.
(17)
This term is explored in the Design Patterns chapter in Volume
2.
(18)
This is something like “rapid prototyping,” where you were supposed
to build a quick-and-dirty version so that you could learn about the system, and
then throw away your prototype and build it right. The trouble with rapid
prototyping is that people didn't throw away the prototype, but instead
built upon it. Combined with the lack of structure in procedural programming,
this often produced messy systems that were expensive to
maintain.
(19)
Although this may be a more American perspective, the stories of Hollywood reach
everywhere.
(20)
Including (especially) the PA system. I once worked in a company that insisted
on broadcasting every phone call that arrived for every executive, and it
constantly interrupted our productivity (but the managers couldn't begin
to conceive of stifling such an important service as the PA). Finally, when no
one was looking I started snipping speaker wires.
(21)
I say “may” because, due to the complexity of C++, it might actually
be cheaper to move to Java. But the decision of which language to choose has
many factors, and in this book I'll assume that you've chosen
C++.
(22)
However, look at Dan Saks' columns in the C/C++ User's
Journal for some important investigations into C++ library
performance.
(23)
Because of its productivity improvements, the Java language should also be
considered here.
(24)
In particular, I recommend looking at Java (http://java.sun.com) and Python
(http://www.Python.org).
(25)
The boundary between compilers and interpreters can tend to become a bit fuzzy,
especially with Python, which has many of the features and power of a compiled
language but the quick turnaround of an interpreted language.
(26)
Python is again an exception, since it also provides separate
compilation.
(27)
I would recommend using Perl or Python to automate this task as part of your
library-packaging process (see www.Perl.org or www.Python.org).
(28)
There are actually a number of variants of getline( ), which will be
discussed thoroughly in the iostreams chapter in Volume 2.
(29)
If you're particularly eager to see all the things that can be done with
these and other Standard library components, see Volume 2 of this book at 
www.BruceEckel.com, and also www.dinkumware.com.
(30)
Note that all conventions seem to end after the agreement that some sort of
indentation take place. The feud between styles of code formatting is unending.
See Appendix A for the description of this book's coding
style.
(31)
Thanks to Kris C. Matson for suggesting this exercise topic.
(32)
Unless you take the very strict approach that “all argument passing in
C/C++ is by value, and the ‘value' of an array is what is produced
by the array identifier: it's address.” This can be seen as true
from the assembly-language standpoint, but I don't think it helps when
trying to work with higher-level concepts. The addition of references in C++
makes the “all passing is by value” argument more confusing, to the
point where I feel it's more helpful to think in terms of “passing
by value” vs. “passing addresses.”
(33)
This term can cause debate. Some people use it as defined here; others use it to
describe access control, discussed in the following
chapter.
(34)
To write a function definition for a function that takes a true variable
argument list, you must use varargs, although these should be avoided in
C++. You can find details about the use of varargs in your C
manual.
(35)
However, in Standard C++ file static is a deprecated feature.
(36)
As noted before, sometimes access control is referred to as
encapsulation.
(37)
This name is attributed to John Carolan, one of the early pioneers in C++, and
of course, Lewis Carroll. This technique can also be seen as a form of the
“bridge” design pattern, described in Volume 2.
(38)
C99, The updated version of Standard C, allows variables to be defined at any
point in a scope, like C++.
(39)
An earlier iteration of the C++ draft standard said the variable lifetime
extended to the end of the scope that enclosed the for loop. Some
compilers still implement that, but it is not correct so your code will only be
portable if you limit the scope to the for loop.
(40)
The Java language considers this such a bad idea that it flags such code as an
error.
(41)
OK, you probably could by fooling around with pointers, but you'd be very,
very bad.
(42)
In Volume 2 of this book (freely available at www.BruceEckel.com), you'll
see a more succinct calculation of an array size using
templates.
(43)
Some folks go as far as saying that everything in C is pass by value,
since when you pass a pointer a copy is made (so you're passing the
pointer by value). However precise this might be, I think it actually confuses
the issue.
(44)
At the time of this writing, not all compilers supported this
feature.
(45)Andrew
Koenig goes into more detail in his book C Traps & Pitfalls
(Addison-Wesley, 1989).
(46)
Co-author with Tom Plum of C++ Programming Guidelines, Plum Hall,
1991.
(47)Bjarne
Stroustrup and Margaret Ellis, The Annotated C++ Reference Manual,
Addison-Wesley, 1990, pp. 20-21.
(48)
Thanks to Owen Mortensen for this example
(49)
Rob Murray,  C++ Strategies & Tactics, Addison-Wesley, 1993, page
47.
(50)
There is a special syntax called placement new that allows you to call a
constructor for a pre-allocated piece of memory. This is introduced later in the
chapter.
(51)
In Java, the compiler won't let you decrease the access of a member during
inheritance.
(52)
To learn more about this idea, see Extreme Programming Explained, by Kent
Beck (Addison-Wesley 2000).
(53)
See Refactoring: Improving the Design of Existing Code by Martin Fowler
(Addison-Wesley 1999).
(54)
Compilers may implement virtual behavior any way they want, but the way
it's described here is an almost universal approach.
(55)
Some compilers might have size issues here but it will be rare.
(56)
Smalltalk, Java, and Python, for instance, use this approach with great
success.
(57)
At Bell Labs, where C++ was invented, there are a lot of C programmers.
Making them all more efficient, even just a bit, saves the company many
millions.
(58)
Actually, not all pointers are the same size on all machines. In the context of
this discussion, however, they can be considered to be the
same.
(59)
With the exception, in Java, of the primitive data types. These were made
non-Objects for efficiency.
(60)
The OOPS library, by Keith Gorlen while he was at NIH. 
(61)The C++ Programming Language by Bjarne Stroustrup (1st edition,
Addison-Wesley, 1986).
(62)
The inspiration for templates appears to be ADA generics.
(63)
All methods in both Smalltalk and Python are weakly typed, and so those
languages do not need a template mechanism. In effect, you get templates without
templates.
(64)
Ibid.
(65)
Explained to me by Andrew Koenig.
OEBPS/Images/image00698.gif
[irdcontroller|

reLocate()

what happens

when move() is move()

called?

Goose

Penguin

move()

move()






OEBPS/Images/image00697.gif
Thermostat

Controls

TowerTem peratureQ)|

|Gooling System|
cool()

)

Heat Pump

cool()

heat()






OEBPS/Images/image00696.gif
Shape

draw()
erase()
move()
getcolor()
setColor()

circle

Square

Triangle

draw()
erase()

draw()
erase()

draw()
erase()






OEBPS/Images/image00695.gif
Shape

draw()
erase()
move()
getcalor()
setColor()

circle

Square

Triangle

Fipvertical()
FlipHorizontal()|






OEBPS/Images/image00694.gif
Shape

draw()
erase()
move()
getcolor()
setColor()

circle

Square

Triangle






OEBPS/Images/image00693.gif
Base

Derived






OEBPS/Images/image00692.gif
Ccar

Engine






OEBPS/Images/image00691.gif
Type Name

Interface

Light

on()

off)
brighten()
dm()






OEBPS/Images/image00690.jpeg
A 4





OEBPS/Images/image00689.jpeg





OEBPS/Images/image00711.gif
Shape
Container

Shape

Shape

Shape






OEBPS/Images/image00710.gif
Object Shape
0shape | Mcircle | [square | Triangle
ocircle | [0Square | [OTrangle

L—T— — 71— 7






OEBPS/Images/image00709.gif
Container
(Holds pairters
to Objects)

(Not gerived

Object | fom object) |_Shape
Object
Object Girde | [Square | [Triangle






OEBPS/Images/image00708.gif
Before Slice After Slice
Dog vptr Pet vptr
pname pname

favoriteActivity






OEBPS/Images/image00707.gif
&Pet;iname

&Pet;iname

&Pet:speak

&Dog: :speak

&Dog: :sit






OEBPS/Images/image00706.gif
Instrument

virtual void play()
virtual char* what()
virtual void adjust()

wind

Percussion

Stringed

void play()
char* what()
void adjust()

void play()
char* what()
void adjust()

void play()
char* what()
void adjust()

woodwind

Brass

void play()
char* what()

void play()
char* what()






OEBPS/Images/image00705.gif
Instrument
pointer

Brass object
ptr o}

[0]]
[1]]

Brass VTABLE:

EBrass: play

EBrass: what

)

BWwind:: adjust






OEBPS/Images/image00704.gif
VTABLES:
Objects

; Sind: play
array of Wind cbiect L |-Gy ahat

Instrument vptr o &Wind:; adjust

pointers AL 1

&Percussion: play

Percussion bject] ]
ptr &}

Percussion: what

BPercussion : adjust

v
t\ Stn'ngedubJE/Et/y &Stringed::play.
vptr & BStringed: what

BStringed: :adjust

Brass object
vptr

—»[ @Brassiplay

Brass what

BWind:: adjust






OEBPS/Images/image00703.gif
Instrument

wind






OEBPS/Images/image00702.gif
Fnction arguments

Return address

Local variables






OEBPS/Images/image00701.gif
—

Gardener

Greenhouse

Maintain
Growing
Temperattre






OEBPS/Images/image00700.gif
Customer

Bank

Make
Deposit

Make
Withdrawal
Get Accaunt

Balance

Tansier
Between

Accourts A

Teller





OEBPS/Images/image00699.gif
"Upcasting”

[

Shape

circle

Square

Triangle






OEBPS/Images/image00687.jpeg





OEBPS/Images/image00686.jpeg
Developpez.com
Club des développeuts





OEBPS/Images/image00688.jpeg





